
What’s in a Bag?
An “Application Proving Interface” for Finite Bags and its Implementation

Alexander Dinges

alexander.dinges@cs.rptu.de

RPTU Kaiserslautern-Landau

Kaiserslautern, Germany

Ralf Hinze

ralf.hinze@cs.rptu.de

RPTU Kaiserslautern-Landau

Kaiserslautern, Germany

ABSTRACT
Bags are ubiquitous in program verification. They are the means

of choice when we want to express that a collection of elements

is a rearrangement of another collection. We are working towards

an “application proving interface” (API) for finite bags that is per-

spicuous, rich, and easy to use. We propose an implementation of

the Bag API in the dependently typed language Agda that has min-

imal meta-theoretic requirements and that we believe is suitable

for both instructional and practical applications. Bags form a free

commutative monoid. The implementation boils down to the free

structure: bag expressions built from the empty bag *+, singleton
bags * x +, and the union of bags 𝐴 ⊎ 𝐵, quotiented by the laws of

commutative monoids.

CCS CONCEPTS
• Software and its engineering→ Formal software verification; •
Theory of computation→ Program reasoning; Type theory.

KEYWORDS
Bags, Multisets, Dependent types, APIs

ACM Reference Format:
Alexander Dinges and Ralf Hinze. 2023. What’s in a Bag?: An “Application

Proving Interface” for Finite Bags and its Implementation. In The 35th Sym-
posium on Implementation and Application of Functional Languages (IFL 2023),
August 29–31, 2023, Braga, Portugal. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3652561.3652563

1 INTRODUCTION
Bags are an important part of the program verification toolbox. A

bag is a collection of elements that takes account of their multi-

plicity but not of their order. Consequently, bags are the means of

choice when we want to express that a collection of elements is

a rearrangement of another collection. Typical examples are rep-

resentation changers: Sorting a list; constructing a heap from a

list; flattening a tree to a list; converting between binary trees and

forests of multiway trees; etc. In each case, we want to make sure

that no elements are lost and that no elements are duplicated or

invented. Bags also play an important role in the specification of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1631-7/23/08

https://doi.org/10.1145/3652561.3652563

abstract datatypes: Looking up a key in a search tree is successful

if and only if the key has been inserted beforehand; every element

extracted from a priority queue has been added beforehand; etc.

Desiderata. Before we can use bags, we have to define them.

However, unlike lists, finite bags do not enjoy a simple inductive

definition. Indeed, the design space for implementing bags is sur-

prisingly large, especially in a dependently typed setting such as

Agda [4]. Before we get an overview of the different options, let us

first establish some guiding criteria for the design of a Bag API and

its implementation, which we are working towards in this paper.

• Clarity: Are interface and implementation perspicuous? Are

they suitable for use in a first course on program verification

(which deals with the correctness of sorting algorithms as a

first non-trivial example)?

• Requirements: What are the requirements on the meta-

theory? Are there any assumptions on the underlying el-

ement type, such as decidable equality or total ordering?

• Ease of use: Can Agda’s proof synthesizer Agsy discharge

simple proof obligations? How easy is it to define functions

over bags or to manually prove their properties?

• Completeness: Is the API sufficiently rich for practical ap-

plications? Are “set-like” operations available? What about

important properties such as cancellation? Is there support

for different recursion patterns, say, induction over the car-

dinality of a bag?

The criteria are, of course, somewhat subjective. In particular, they

are geared towards didactic applications.

Related work. The existing approaches can be roughly divided

into four categories.

• Ad-hoc approaches: Some solve specialised problems, for ex-

ample: When is a list a permutation of another list? See

Figure 1, which is a minor rewrite of van Laarhoven’s blog

post. Cunning as it is, this approach is too concrete and too
specific — elementary properties such as transitivity of _≈_
require considerable proof effort.

• Approaches based on multiplicity: Putting the math spectacles

on, bags can be represented as finite maps into the naturals,

X →
fin

N, mapping each potential element to its multiplic-

ity. This approach is too restrictive as it requires decidable
equality — consider defining singleton bags.

• Approaches based on sequence types: Here is a general recipe
for constructing bag types. Pick an arbitrary sequence type

and endow it with an equivalence relation that abstracts

away from the order of elements. This spans a 2-dimensional

design space. Choices for sequence types include

– finite maps from positions to elements, Fin n→ X ;

https://orcid.org/0009-0003-1694-4567
https://orcid.org/0000-0001-5678-0286
https://doi.org/10.1145/3652561.3652563
https://doi.org/10.1145/3652561.3652563

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

– standard lists; or
– join lists, which are akin to bag expressions built from the

empty bag *+, singletons * x +, and union 𝐴 ⊎ 𝐵
There are, at least, four options for defining the underlying

equivalence relation:

– Using permutations [5]: Two sequences are equivalent iff

a bijection on positions can be exhibited.

– Via proof-relevant membership [8]: Two sequences A and B
are equivalent iff for each proof of x ∈ A there is a corre-

sponding proof x ∈ B, and vice versa. This is too restrictive
as it is confined to element types with propositional equal-
ity (or, at least, unique identity proofs).

– Using multiplicity: Two sequences are equivalent iff the

multiplicities of each element are equal. Again, this is too
restrictive as it requires decidable equality.

– Using proof trees: Two bag expressions are equivalent iff
there is a proof using the laws of commutative monoids.

• Approaches based on quotient types: Bags can finally be de-

fined as a higher inductive type (HIT). The options are, in

principle, similar to the previous approach. Take an arbitrary,

inductively defined sequence type and endow it with identi-

ties that abstract away from order. While this is an exciting

line of research, HITs are probably too sophisticated for a

first course on program verification.

The set of all finite bags forms a free commutative monoid. Our

implementation amounts to the free structure: bag expressions

quotiented by the laws of commutative monoids. This is, perhaps,

the simplest, most straightforward implementation one can think

of. Rather surprisingly, it turned out to be the most practical in

terms of proof effort and convenience of use.

Contributions. Our paper makes the following contributions:

• we design a rich Bag API that includes “set-like” operations,

properties such as cancellation, and recursion schemes;

• we provide an implementation of the Bag API that is per-

spicuous, easy to use, and that we believe is suitable for both

instructional and practical applications;

• the implementation has minimal meta-theoretic require-

ments and does not impose any restrictions on the element

type (unless they are unavoidable for principled reasons);

• the implementation serves nicely as a blueprint for other

free structures: lists, the free monoid, and finite sets, the free

bounded semilattice.

Overview. The remainder of the paper is structured as follows.

Section 2 introduces the “application proving interface” (API) with

examples. Sections 3–8 detail the implementation of the Bag API.

Along the way we discuss alternative approaches. Section 9 reviews

related work in more depth and, finally, Section 10 concludes.

The paper is aimed at a reader who is familiar with the basics of

Agda and and program verification, say, to the level of Stump [12].

2 USE OF BAGS IN PROGRAM VERIFICATION
In this section, the Bag API is introduced by means of examples. As

a first concrete application, consider a sorting function, say, sorting
by insertion:

sort ∶ List Elem → List Elem
sort [] = []
sort (a ∶∶ as) = insert a (sort as)

1

insert ∶ Elem → List Elem → List Elem
insert a [] = a ∶∶ []
insert a (b ∶∶ bs) with a ⩽?⩾ b
... ∣ LE = a ∶∶ b ∶∶ bs
... ∣ GE = b ∶∶ insert a bs

1
A sorting function has to satisfy two correctness properties:

(1) The output is ordered.

(2) The output is a permutation of the input.

The first property often attracts a lot of attention, whereas the

second is woefully neglected. Clearly, either property alone is

insufficient: the constant function that always returns the empty

list satisfies the first, the identity function the second property.

One can only speculate about the reasons why the permutation

property gets less attention. Perhaps, because it is so “obvious”:

inspecting, say, the second equation of sort, we “see” that each

variable that is introduced on the left-hand side appears exactly once

on the right-hand side — but, of course, “visual” code inspection can

be misleading. Perhaps, because formal proofs of the property are

cumbersome, especially if we actually try to exhibit the underlying

permutation, the function that maps positions of input elements to

positions in the output.

Bags come to the rescue. Since bags abstract away from the order

of elements, a list is a permutation of another list if and only if they

are equivalent as bags. So as a preparatory step towards showing

the second correctness property, we define a function that turns a

list into a bag:

bag : List Elem→ Bag Elem

bag [] = *+
bag (a :: as) = * a +] bag as

1

The function bag illustrates the three principled ways of forming a

bag: (1) *+ is the empty bag, which contains no elements; (2) * x +
denotes the bag that contains a single occurrence of x; (3) 𝐴 ⊎ 𝐵
denotes the bag union of A and B, also known as the sum of A and B
as the multiplicities of elements are added.

A fairly straightforward, inductive proof establishes the permu-

tation property of sorting by insertion:

sort∼ : ∀ as→ bag (sort as) ∼ bag as

sort∼ [] =
proof

bag (sort [])
∼〈] 〉

bag []
�

sort∼ (a :: as) =
proof

1

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

select(A, As, [A|As]).
select(A, [B|As], [B|Bs]) :-
 select(A, As, Bs).

permutation([], []).
permutation([A|As], Bs) :-
 select(A, Xs, Bs),
 permutation(As, Xs).

data Remove {A ∶ Set } ∶ A → List A → List A → Set where
head ∶ Remove a (a ∶∶ as) as
tail ∶ Remove a as as′ → Remove a (b ∶∶ as) (b ∶∶ as′)

data _ ≈3 _ {A ∶ Set } ∶ List A → List A → Set where
[] ∶ [] ≈3 []
∶∶ ∶ Remove a bs bs′ → as ≈3 bs′ → a ∶∶ as ≈3 bs

1

Figure 1: When is a list a permutation of another list, a Prolog-inspired approach.

bag (sort (a :: as))
∼〈] 〉

bag (insert a (sort as))
∼〈 insert∼ a (sort as) 〉
N a O] bag (sort as)

∼〈]] sort∼ as 〉
N a O] bag as

∼〈] 〉
bag (a :: as)

�
1

The equality of bags is written A ∼ B, pronounced “A equivales B”.
The proof above uses a format usually attributed to Wim Feijen:

the term p in A ∼⟨ p ⟩ B evidences the equivalence of A and B. For
example, reflexivity is evidenced by 𝜄 like identity. Given proofs

p : A1 ∼ A2 and q : B1 ∼ B2, the term 𝑝 ⊎ 𝑞 demonstrates the equiv-

alence of 𝐴1 ⊎ 𝐵1 and 𝐴2 ⊎ 𝐵2 .
The proof format is targeted at the human reader. Agda also

happily accepts the following variant of sort∼, which only provides

the evidence, chaining the rewrite steps using transitivity, written

as forward composition: p # q.

sort∼ : ∀ as→ bag (sort as) ∼ bag as

sort∼ [] =]

sort∼ (a :: as) = insert∼ a (sort as) # (]] sort∼ as)
1

Typical of after-the-fact verification, the proofs mirror the structure

of the program: like sort resorts to a helper function, sort∼ relies

on a lemma.

insert∼ : ∀ a as→ bag (insert a as) ∼ * a +] bag as

insert∼ a [] =]

insert∼ a (b :: bs) with a 6?> b

... | LE =]

... | GE = (]] insert∼ a bs) # swap
1

Sorting by insertion works by repeatedly swapping adjacent list

elements. The proof reflects this property: the only non-trivial

rearrangement is introduced by swap.

swap : A] (B] C) ∼ B] (A] C)
swap = f U # (W]]) # U

1
Bag union is associative and commutative, evidenced by the combi-

nators 𝛼 : (𝐴 ⊎ 𝐵) ⊎ C∼A ⊎ (𝐵 ⊎𝐶) and 𝛾 :𝐴 ⊎ 𝐵 ∼ 𝐵 ⊎𝐴 In the first

step above, we apply associativity from right to left (𝜎 witnesses

the symmetry of bag equivalence); then we swap the bags A and B;

and, finally, we move the parentheses to the right.

A ⊎ (𝐵 ⊎ 𝐶) ∼ (𝐴 ⊎ 𝐵) ⊎ C ∼ (𝐵 ⊎ 𝐴) ⊎ C ∼B ⊎ (𝐴 ⊎ 𝐶)
The proof combinators are tangible. Applied to a random, four-

element list sort∼ produces the following proof (lightly edited).

: let as = 4 :: 7 :: 1 :: 1 :: [] in bag (sort as) ∼ bag as

= (]] swap) # swap # (]] ((]] swap) # swap))
1

The input list features four inversions. As to be expected, the num-

ber of swaps equals the inversion count.

As an intermediate summary, _∼_ is an equivalence relation, it

is reflexive, symmetric, and transitive. Bag union _⊎_ is associative
and commutative with the empty bag *+ as its neutral element.

Figure 2 shows the API at a glance.

Bag membership. Turning briefly to the sorting property, the fol-

lowing inductively defined predicate captures that a list is ordered.

(We assume that the type of elements is totally ordered.)

data _6-ordered_ (x : Elem) : List Elem→ Set where
[] : x 6-ordered []
:: : x 6 a→ a 6-ordered as→ x 6-ordered (a :: as)

1
Actually, the infix relation x ⩽-ordered as conjoins two properties:

(1) x is a lower bound of the elements in as; and (2) the list as
is non-descending. The second property holds by definition: the

empty list is non-descending; a non-empty list is non-descending

iff its head is a lower bound of the elements in the tail and the tail is

itself non-descending. The first property, however, requires proof:

lower-bound : x 6-ordered as→ a ∈ bag as→ x 6 a

lower-bound (pa :: pas) (head) = pa

lower-bound (pa :: pas) (tail p) = 6-transitive pa (lower-bound pas p)
1

The function makes use of a feature that we have not seen before:

bag membership, written a ∈ A.
Membership is jolly useful when we want to quantify over el-

ements of some finite collection. Assuming a function that “bagi-

fies” a collection, bag : Collection Elem→ Bag Elem, the statement

∀ a→ a ∈ bag as→ P a expresses that P holds for each element

contained in the collection as. Likewise, ∃ a→ a ∈ bag as × P a1

captures the existence of an element in as that satisfies the property.
There are three principled ways to show membership: (1) here

evidences that a is contained in the singleton bag * a +; given either

p : x ∈ A or q : x ∈ B, (2) inl p and (3) inr q show that x is contained
in 𝐴 ⊎ 𝐵 In general, the evidence for a ∈ A points to an occurrence
of a in A.
1
Agda has no special support for existential quantification, so we actually have to

write ∃ (𝜆 a→ a ∈ bag as × P a) .

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

Bagsare
param

etrised
by

the
elem

enttype:
B
ag

:
Set→

Set

Th
ere

are
three

principalconstructors:
*+

:
B
ag

X
*_+

:
X
→

B
ag

X
_]

_
:
B
ag

X
→

B
ag

X
→

B
ag

X

O
perations

C
onstructors

Th
e
type

constructor
B
ag

isa
m
onad:

m
ap

:(X
→

Y)→
(B
ag

X
→

B
ag

Y)
*_+

:
X
→

B
ag

X
join

:
B
ag
(B
ag

X)→
B
ag

X

Functor
and

m
onad

Standard
“set-like”operations:

_]
_
:
B
ag

X
→

B
ag

X
→

B
ag

X
_∪

_
:
B
ag

X
→

B
ag

X
→

B
ag

X
F

_∩
_
:
B
ag

X
→

B
ag

X
→

B
ag

X
F

__
:
B
ag

X
→

B
ag

X
→

B
ag

X
F

G
iven

evidence
r
:
x
∈
A
,
“bag

m
inus”

A
−
r
rem

ovesthisoccurrence
of

x
in

A
:

_−
_
:(A

:
B
ag

X)→
x
∈
A
→

B
ag

X

Set-like
operations

Cardinality
and

m
ultiplicity:

card
:
B
ag

X
→

N
#

:
X
→

B
ag

X
→

N
F

D
eciding

m
em

bership,equivalence,and
con-

tainm
ent:

_∈
?_

:(x
:
X)→

(A
:
B
ag

X)
F

→
D
ecide(x

∈
A)

_∼
?_

:(A
B
:
B
ag

X)
F

→
D
ecide(A

∼
B)

_⊆
?_

:(A
B
:
B
ag

X)
F

→
D
ecide(A

⊆
B)

Qu
eries

Evidence
foran

occurrence
ofan

elem
ent:

here
:
x
∈

*
x+

inl
:
x
∈
A
→

x
∈
A
]
B

inr
:
x
∈
B
→

x
∈
A
]
B

R
elations

M
em

bership

Bag
equivalence

is,w
ell,an

equivalence:
]

:
A
∼
A

f
:
A
∼
B
→

B
∼
A

#
:
A
∼
B
→

B
∼
C
→

A
∼
C

Bag
union

iscongruent:
_]

_
:

A
1 ∼

A
2 →

B
1 ∼

B
2

→
A
1]

B
1 ∼

A
2]

B
2

Elem
ents

ofequivalentbags
can

appearin
any

order:
o
:*+]

A
∼
A

U
:(A
]
B)]

C
∼
A
]
(B
]
C)

W
:
A
]
B
∼
B
]
A

Evidence
is

abbreviated
by

greek
letters

so
thatproofs

are
shortand

sw
eet.Speak-

ing
nam

essuch
as∼

-reflexive,]
-congruent,

∼
-left

-unitare
provided,asw

ell.

Equivalence

W
im

Feijen’sproofstyle
allow

syou
to

m
ake

interm
ediate

stepsexplicit,e.g.
d
:

A
]

*+∼
A

d
=

proof
A
]

*+
∼〈

W
〉

*+]
A

∼〈
o
〉

A
�

Equivalence
proofs

Th
e
bag

A
isa

subbag
of

B
iff

there
existsa

bag
Δ
such

that
A
]
Δ
∼
B:

data
_⊆

_
:
B
ag

X
→

B
ag

X
→

Set
w
here

such-that
:∀

Δ
→

A
]
Δ
∼
B

→
A
⊆
B

Containm
entisa

partialorder:
⊆
-reflexive

:
A
⊆
A

∼
-w

eaken
:
A
∼
B
→

A
⊆
B

⊆
-transitive

:
A
⊆
B
→

B
⊆
C
→

A
⊆
C

⊆
-antisym

m
etric

:
A
⊆
B
→

B
⊆
A

→
A
∼
B

C
ontainm

ent

•
Th

e
type

B
ag

X
isthe

free
com

m
utative

m
onoid

over
X
.

•
Itisconicaland

cancellative:
con

ical
:
A
]
B
∼

*+→
A
∼

*+
∼
-cancel

:
A
]
B
1 ∼

A
]
B
2 →

B
1 ∼

B
2

⊆
-cancel:

A
]
B
1 ⊆

A
]
B
2 →

B
1 ⊆

B
2

•
(B
ag

X
,_∪

,∩
_)isa

distributive
lattice:

_∪
_
and

_∩
_
are

associative,com
m
uta-

tive,and
idem

potent;they
satisfy

absorp-
tion

and
distributive

law
s:

A
∪
(A
∩
B)∼

A
A
∩
(A
∪
B)∼

A
A
∪
(B
∩
C)∼

(A
∪
B)∩

(A
∪
C)

A
∩
(B
∪
C)∼

(A
∩
B)∪

(A
∩
C)

•
*+

isthe
leastelem

ent:
*+∪

A
∼
A

*+∩
A
∼

*+
•

_]
_
isassociative

and
com

m
utative

w
ith

the
em

pty
bag

asitsneutralelem
ent;_]

_
distributesover_∪

_
and

_∩
_:

A
]
(B
∩
C)∼

(A
]
B)∩

(A
]
C)

A
]
(B
∪
C)∼

(A
]
B)∪

(A
]
C)

•
A
bsorption

law
sand

counting
law

:
A
∩
(A
]
B)∼

A
A
∪
(A
]
B)∼

A
]
B

A
]
B

∼
(A
∪
B)]

(A
∩
B)

Properties

A
lgebraic

structures

Bag
sum

_]
P
has

a
left

adjoint,bag
differ-

ence
_\

P,butnota
rightadjoint.

(A
\
P
⊆
B)
↔
(A
⊆
B
]
P)

(A
]
P
⊆
B)→

(A
⊆
B
\
P)

(A
]
P
⊆
B)←

(A
⊆
B
\
P)←

P
⊆
B

to-rear
:
(r

:
x
∈
A)

→
A
∼
(A
−
r)]

*
x+

B
ag

diff
erence

Connecting
lem

m
a:

A
∩
B
∼
A
↔

A
⊆
B
↔

A
∪
B
∼
B

M
em

bership
is
related

to
equivalence

and
containm

ent:
∼
-include

:
A
∼
B
→

x
∈
A
→

x
∈
B

⊆
-include

:
A
⊆
B
→

x
∈
A
→

x
∈
B

x
∈
A
↔

*
x+
⊆
A

A
rithm

etic
pecking

order:
A
∩
B
⊆
A
∪
B
⊆
A
]
B

Interrelations

Functions
from

bags
can

be
defined

using
pattern

m
atching:

f
:
B
ag

X
→

Y
f*+

=
...

f*
x+

=
...

f
(A
]
B)

=
...

CM
-hom

om
orphism

sare
captured

by
fold

:
{|
eq

:
E
q
Y
|}

{|
M

:C
om

m
utative-M

onoid
Y
|}

→
(X
→

Y)→
B
ag

X
→

Y

Freenessentailsthatfold
f
isthe

uniqueCM
-

hom
om

orphism
from

the
bag

m
onoid

to
M

such
that

fold
f*

x+≈
f
x.

Patterns
ofdefinition

Functions
from

bags

Th
e
“consview

”allow
susto

distinguish
be-

tw
een

em
pty

and
non-em

pty
bags:

data
V
iew
(A

:
B
ag

X)
:
Set

w
here

Em
pty

:
A
∼

*+→
V
iew

A
Laden

:(a
:
X)

→
(A
′
:
B
ag

X)
→

A
∼

*
a+]

A
′

→
V
iew

A
select

:(A
:
B
ag

X)→
V
iew

A

Ifthe
bag

is
non-em

pty,it
is
split

into
an

elem
entand

the
residualbag.

Th
e
“listview

”iteratesthe
consview

:
data

List-View
(A

:
B
ag

X)
:
Set

w
here

[]
:{

q
:
A
∼

*+}→
List-View

A
::

:(a
:
X)

→
{A
′
:
B
ag

X
}

→
{
q
:
A
∼

*
a+]

A
′}

→
List-View

A
′→

List-View
A

list-view
:(A

:
B
ag

X)
→

List-View
A

V
iew

s

x
∈
A
↔

x
#
A
<
1

A
∼

B
↔
(∀

x→
x
#
A
≡
x
#
B)

A
⊆
B
↔
(∀

x→
x
#
A
4
x
#
B)

x
#(A

]
B)≡

(x
#
A)+

(x
#
B)

x
#(A

\
B)≡

(x
#
A)
¤−
(x

#
B)

x
#(A

∩
B)≡

(x
#
A)↓

(x
#
B)

x
#(A

∪
B)≡

(x
#
A)↑

(x
#
B)

Further
properties

M
ultiplicities

1Figure 2: The “Bag API Cheat Sheet” (operations marked with a “⋆” require decidable equality)

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

Membership is compatible with the equivalence relation: if A
equivales B, then x is contained in A iff it is contained in B.

include : A ∼ B→ (∀ {x } → x ∈ A→ x ∈ B)
include' : A ∼ B→ (∀ {x } → x ∈ A← x ∈ B)

1

Cancellation properties. Finite bags form a commutative monoid,

the so-called free commutative monoid. This monoid is special in

that it has two important cancellation properties, which allow us

to cancel out common left or right terms.

cancel-left : A] B1 ∼ A] B2 → B1 ∼ B2
cancel-right : A1] B ∼ A2] B→ A1 ∼ A2

1
To illustrate the use of cancellation, let us show that two ordered

permutations are equal: if x ⩽-ordered as and x ⩽-ordered bs, then

bag as ∼ bag bs↔ as ≡ bs
1

The right-to-left direction holds trivially as propositional equality

≡ is the least reflexive relation. Figure 3 lists the proof for the

other direction.We sketch the argument for the interesting case that

both lists are non-empty, that is, asB (a :: as) and bsB (b :: bs).
Since we know that b itself is a lower bound of b :: bs,

pbs : b 6-ordered bs

(6-reflexive :: pbs) : b 6-ordered (b :: bs)
1

and, furthermore, that a is contained in b :: bs,

q : (a :: as) ∼ (b :: bs)
(inl here) : a ∈ (a :: as)
(include q (inl here)) : a ∈ (b :: bs)

1
we may conclude using lower-bound that b ⩽ a. A symmetric ar-

gument gives a ⩽ b. Since total orders are antisymmetric, the two

heads are propositionally equal: a ≡ b. Cancelling the heads, the

equality of the tails is then established recursively.

Specification of abstract datatypes. Bags also play a pivotal role

in the specification of abstract datatypes. Take for example priority

queues, which support efficient access to the least element of a

collection. Priority queues are conceptually bags as the collection

may contain repeated elements. Assuming that queues are indexed

by their size, Q : N→ Set, a fairly complete specification of the

requirements is given by:

bag empty ∼ *+
∀ a → bag (singleton a) ∼ * a +
∀ (P : Q m) (Q : Q n) → bag (P union Q) ∼ bag P] bag Q

∀ (Q : Q 0) → *+ ∼ bag Q

∀ (Q : Q (1 + n)) → * min Q +] bag (delete-min Q) ∼ bag Q

∀ (Q : Q (1 + n)) → (∀ {a} → a ∈ bag Q → min Q 6 a)
1

The first three equivalences express that the queue construc-

tors are concrete incarnations of the corresponding abstract bag

constructors. Non-empty queues of type Q (1 + n) support comput-

ing the minimal element, min : Q (1 + n) → Elem, and removing

it, delete-min : Q (1 + n) → Q n. The last two requirements ensure

thatmin Q is the least element of Q: it is contained in Q and a lower

bound for the elements in Q. Overall, the axioms guarantee that

each extracted element was added beforehand.

3 REPRESENTATION OF BAGS
As for the implementation of bags, we learned the following lesson:

don’t try to be clever. The simplest, most straightforward imple-

mentation turned out to be the most practical in terms of proof

effort and convenience of use. This section provides the nitty-gritty

details, including discussions of alternative approaches.

Recall that there are three principled ways for forming bags:

singleton bags * x +, the empty bag *+, and bag union 𝐴 ⊎ 𝐵. We

turn these operations into data constructors of the Bag datatype.

data Bag (X : Set) : Set where
*_+ : X → Bag X

*+ : Bag X

] : Bag X → Bag X → Bag X
1

Loosely speaking, the operations do nothing, they merely create

binary trees, variably known as join lists or leaf trees. An alternative

view is to interpret the elements of Bag X as bag expressions or

syntax trees — so the datatype definition captures the syntax of

bags. For example, the bags

Eau-de-Cologne East-Berlin : Bag N
Eau-de-Cologne = (* 4 +] (* 7 +] * 1 +))] (*+] * 1 +)
East-Berlin = (* 1 +] * 1 +)] (* 4 +] * 7 +)

1
correspond to the trees depicted below.

]
]

* 4 +]

* 7 + * 1 +

]

*+ * 1 +
∼

]
]

* 1 + * 1 +

]

* 4 + * 7 +

1

Both binary trees represent the same “abstract” bag: Eau-de-Cologne
equivales East-Berlin (more about equivalence shortly). In general, a

finite bag has many concrete tree representations, in fact, infinitely

many due to the availability of empty leaves.

The type of finite bags is a functor

map : (X → Y) → (Bag X → Bag Y)
map f * x + = * f x +
map f *+ = *+
map f (A] B) = map f A] map f B

1
and a monad: *_+ is its unit, multiplication is defined:

join : Bag (Bag X) → Bag X

join * A + = A

join *+ = *+
join (A] B) = join A] join B

1
Remark 1. A common alternative [10, 13] is to represent bags as

functions into the natural numbers, Bag X = X → N, mapping each
potential element to its multiplicity. The empty bag, various “set-like”
operations and relations enjoy elegant definitions, which is perhaps
why the approach is tempting (_ ¤−_ is subtraction of natural numbers
also known as monus; _↑_ and _↓_ are maximum and minimum,
respectively).

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

unique : x 6-ordered as→ x 6-ordered bs→ bag as ∼ bag bs→ as ≡ bs

unique [] [] q = reflexive

unique [] (pb :: pbs) q = impossible q
unique (pa :: pas) [] q = impossible (f q)
unique (pa :: pas) (pb :: pbs) q
with 6-antisymmetric (lower-bound (6-reflexive :: pbs) (include q (inl here)))

(lower-bound (6-reflexive :: pas) (include' q (inl here)))
... | reflexive = congruent2 _::_ reflexive (unique pas pbs (cancel-left q))

1

Figure 3: Use of cancellation: two ordered permutations are equal.

*+ = 𝜆 x → 0 A ⊎ B = 𝜆 x → A x + B x

A ⊆ B = ∀ x → A x ⩽ B x A \ B = 𝜆 x → A x ¤− B x

A ∼ B = ∀ x → A x ≡ B x A ∪ B = 𝜆 x → A x ↑ B x

A ∩ B = 𝜆 x → A x ↓ B x

However, other operations are less convenient or even impossible
to define. For example, for singleton bags we need to assume that
equality on X is decidable (see also Section 7). Bags as functions
into the naturals comprise both finite and infinite bags, so this is
actually a different type! In particular, it fails to be a monad as,
for example, the nested bag * *+ , * 1 + , * 1 , 2 + , * 1 , 2 , 3 + , . . . +
cannot be flattened. Worse, it is not possible to define functions out of
bags, such as cardinality (a bag is like a black hole).

Remark 2. The support of a bag is the set of elements with positive
multiplicity. Finite bags can be modelled as functions into the naturals
with finite support. While this definition works well in theory it is less
useful in practice as it forces us to implement finite sets first.

Alternatively, we could model finite bags as finite maps into the
naturals, building on an arbitrary implementation of finite maps, such
as search trees or tries. However, then we need to make even stronger
assumptions, typically, that the element type is totally ordered. More-
over: We intend, perhaps, to use bags to establish the correctness of
search trees — we have to be careful not to create a vicious circle.

4 RELATIONS ON BAGS
Membership. For the purposes of presentation, let us assume that

equality on the element type X is given by propositional equality.

(This assumption is not acceptable in the production code as it

would bar us from using bags of bags, see also Section 10.)

Bag membership is an inductively defined relation.

data _∈_ (x : X) : Bag X → Set where
here : x ∈ * x +
inl : x ∈ A→ x ∈ A] B

inr : x ∈ B → x ∈ A] B
1

An element of x ∈ A can be seen as a path in the tree A, a path

from the root to some x-labelled leaf. For example, the number 1

occurs twice in Eau-de-Cologne, so there are two different proofs

of membership,

one one′ : 1 ∈ Eau-de-Cologne
one = inl (inr (inr here))
one′ = inr (inr here)

1

illustrated below, where the first path is highlighted in brown and

the second in blue.]
]

* 4 +]

* 7 + * 1 +

]

*+ * 1 +

1
In general, the number of paths of type x ∈ A equals the multiplicity

of the element x in A.

Equivalence. Since bags are trees in disguise, we cannot use

propositional equality as the underlying equivalence as it is too

discriminating. Rather, we define a tailor-made relation. Similar

to the definition of Bag, we turn the defining properties of the

relation into constructors of a datatype. In other words, we define

an inference or deduction system, whose elements are proof trees.

data _∼_ {X : Set } : Bag X → Bag X → Set where
] : A ∼ A

f : A ∼ B→ B ∼ A

: A ∼ B→ B ∼ C → A ∼ C

] : A1 ∼ A2 → B1 ∼ B2 → A1] B1 ∼ A2] B2
o : *+] A ∼ A

U : (A] B)] C ∼ A] (B] C)
W : A] B ∼ B] A

1
The axioms of the inference system can be divided into three groups:

(1) the first three axioms capture that the relation is an equivalence;

(2) the fourth axiom specifies that it is a congruence: bag union ap-

plied to equivalent arguments yields equivalent results; and, finally,

(3) the last three axioms determine that bag union is associative

and commutative with the empty bag as its neutral element.

Observe that we do not include right unitality as an axiom as it

can be easily inferred:

d : A] *+ ∼ A

d = W # o
1

As an aside, the proof format used in Section 2 is taken from the

Agda standard library [14] — the notation is completely standard

and can be defined for any transitive relation.

A bag is a tree, evidence for membership is a path. In this spirit,

evidence for the equivalence of two bags is a tree transformer that
transmogrifies the first into the second tree. For example, 𝛾 swaps

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

two subtrees (incidentally, a typical operation used in the imple-

mentation of priority queues), whereas 𝛼 performs a right rotation

(incidentally, a typical operation used in the implementation of

search trees or sequences).

]

A B

W
−→
←−
W

]

B A

]
]

A B

C

U
−→
←−
f U

]

A]

B C
1

Continuing our running example, the proof

go-east : Eau-de-Cologne ∼ East-Berlin
go-east = (f U] o) # U # W

1
shows how to transmogrify Eau-de-Cologne to East-Berlin — Fig-

ure 4 details each step of the transformation.

Remark 3. The equivalence relation can be defined in a variety of
different ways. An alternative approach builds on the fact that two
bags are equivalent iff the multiplicities of each element are equal
(see Remark 1). Since furthermore the multiplicity of an element x
in A is given by the number of paths of type x ∈ A, we could define:

𝐴 ≈ 𝐵 = ∀{𝑥} → (𝑥 ∈ 𝐴) � (𝑥 ∈ 𝐵) (2)

This approach is known as “proof-relevant membership” [8], as the
proofs of x ∈ A and x ∈ B have to be in one-to-one correspondence.
This approach is, however, cumbersome in practice as it requires us to
define a mapping from x ∈ A to x ∈ B plus proofs that the mapping
is injective and surjective or, alternatively, to exhibit a forward and
a backward mapping plus proofs that they are mutually inverse. In
what follows we show that A ∼ B implies A ≈ B. The reader is invited
to establish the other direction, which is a lot harder.

A tree transformation induces a transformation of paths, actually

two transformations, one in the forward direction and another one

in the backward direction.

include : A ∼ B→ (∀ {x } → x ∈ A→ x ∈ B)
include' : A ∼ B→ (∀ {x } → x ∈ A← x ∈ B)

1
We only show the proof of the forward direction. Its counterpart is

defined completely analogously. In fact, the functions are mutually

recursive: in the 𝜎-case, one calls the other (a typical setup for

functions that operate on proof trees).

include] p = p

include (f q) p = include' q p

include (q # k) p = include k (include q p)
include (q] k) (inl p) = inl (include q p)
include (q] k) (inr q) = inr (include k q)
include o (inr p) = p

include U (inl (inl p)) = inl p
include U (inl (inr q)) = inr (inl q)
include U (inr r) = inr (inr r)
include W (inl p) = inr p
include W (inr q) = inl q

1
Consider the equations dealing with associativity “𝛼”: the law in-

volves three variables, the corresponding trees consist of three

named subtrees, hence we have three equations dealing with three

different paths. Similar remarks apply to the other equations.

Two routine proofs then show that the transformations are mu-

tually inverse.

include' q (include q p) ≡ p

include q (include' q q) ≡ q
1

To illustrate, the leftmost 1 in Eau-de-Cologne is mapped to the

leftmost 1 in East-Berlin, see also Figure 4.

: include go-east one ≡ inl (inl here)
= reflexive

1
Containment. Each monoid (𝑀 ; 𝜀; ·) comes equipped with a pre-

ordering, the so-called algebraic ordering: 𝑎 is at most 𝑏 if and only

there is a Δ such that 𝑎 · Δ = 𝑏. If the monoid is additionally can-

cellative and conical (see Sections 5 and 6), then the preorder is

antisymmetric. In other words, the algebraic ordering is actually a

partial order. We use the general construction to define the subbag

relation.

data _⊆_ {X : Set } : Bag X → Bag X → Set where
such-that : ∀ Δ→ A] Δ ∼ B→ A ⊆ B

⊇ : Bag X → Bag X → Set

A ⊇ B = B ⊆ A
1

Reflexivity and transitivity enjoy straightforward (generic)

proofs.

⊆-reflexive : A ⊆ A

⊆-reflexive = *+ such-that d
1⊆-transitive : A ⊆ B→ B ⊆ C → A ⊆ C

⊆-transitive (Δ1 such-that q1) (Δ2 such-that q2) =
Δ1] Δ2 such-that f U # (q1]]) # q2

1
We postpone the proof of antisymmetry until Section 6.

Summary. The set of all finite bags with elements drawn from X
forms a commutative monoid. In fact, the structure is a free com-

mutative monoid on X (more about this in Section 5). The imple-

mentation basically amounts to the free structure: expressions built

from the empty bag *+, singleton bags * x +, and bag union 𝐴 ⊎ 𝐵,
quotiented by the laws of commutative monoids.

Quite attractively, the very same approach can be used to im-

plement lists, the free monoid, and finite sets, the free idempotent

commutative monoid also known as the free bounded semilattice.

For lists, we simply drop commutativity, A ++ B ∼ B ++ A. For sets,
we simply add idempotency, A ∪ A ∼ A.

5 OPERATIONS ON BAGS
Operations on bags are defined by induction over the structure

of the bag datatype. Consider, as an example, the operation that

removes a single occurrence of an element in a given bag.

− : (A : Bag X) → (r : x ∈ A) → Bag X

* x + − here = *+
(A] B) − inl p = (A − p)] B

(A] B) − inr q = A] (B − q)
1

Observe the difference to general bag difference (pun intended).

Since we definitely know that the element x occurs in A, adding x
again yields the original bag A.

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

]
]

* 4 +]

* 7 + * 1 +

]

*+ * 1 +
f U] o−→

]

]

]

* 4 + * 7 +

* 1 +

* 1 +
U−→

]
]

* 4 + * 7 +

]

* 1 + * 1 +

W−→
]

]

* 1 + * 1 +

]

* 4 + * 7 +

1

(1)

Figure 4: A proof that Eau-de-Cologne equivales East-Berlin — the transformation sends the leftmost occurrence of 1 in the first
tree to the leftmost occurrence of 1 in the second tree.

to-rear : (r : x ∈ A) → A ∼ (A − r)] * x +
to-rear (here) = f o
to-rear (inl p) = (to-rear p]]) # U # (]] W) # f U

to-rear (inr q) = (]] to-rear q) # f U
1

We use removal to implement general bag difference, postponing

the definition until Section 7.

Homomorphisms. Monoid homomorphisms are particularly easy

to define. In Section 2 we have introduced a transformation that

turns a list into a bag. Here is its inverse:

list : Bag X → List X

list * x + = [x]
list *+ = []
list (A] B) = list A ++ list B

1
In general, a homomorphism is uniquely defined by its action on

singleton bags; the second and third equation are forced as a ho-

momorphism preserves the structure of a monoid: bag union is

mapped to the operation of the target monoid and the empty bag

to its unit.

As a further example, card determines the cardinality or size of

a finite bag, the sum of all multiplicities.

card : Bag X → N
card * x + = 1
card *+ = 0
card (A] B) = card A + card B

1
Cardinality is even a homomorphism between commutative
monoids, a CM-homomorphism. This entails, however, a proof obli-

gation. We have to show that card does not depend on the represen-

tation of its argument: equivalent bags possess the same cardinality.

card∼ : A1 ∼ A2 → card A1 ≡ card A2

card∼ (]) = reflexive

card∼ (f q) = symmetric (card∼ q)
card∼ (q # k) = transitive (card∼ q) (card∼ k)
card∼ (q] k) = congruent2 _+_ (card∼ q) (card∼ k)
card∼ (o) = +-left-unit
card∼ (U {A = A}) = +-associative (card A)
card∼ (W {A = A}) = +-commutative (card A)

1
Like the axioms of _∼_, the proof obligations can be divided into

three groups: (1) the first three equations use that propositional

equality is an equivalence; (2) the fourth equation uses that addi-

tion is compatible with this relation; and, finally, (3) the last three

equations confirm that addition is associative and commutative

with 0 as its neutral element. Everything nicely falls into place.

By contrast, list is not a CM-homomorphism as list concatena-

tion is not commutative. In other words, list is sensitive to the

representation of the to-be-listed bag. There is nothing wrong with

representation dependence per se; the function list is just less widely
applicable compared to a true CM-homomorphism.

Cardinality is useful for conducting arguments over the size of

a bag. As an example, let us show that the bag monoid is conical.

In general, a monoid (𝑀 ; 𝜀; ·) is conical iff 𝑎 · 𝑏 = 𝜀 implies 𝑎 = 𝜀
and 𝑏 = 𝜀 for all 𝑎 and 𝑏. In other words, non-𝜀 elements have no

inverse. We first establish a useful lemma: a bag with cardinality

zero equivales the empty bag.

card-A≡0→A∼*+ : ∀ (A : Bag X) → card A ≡ 0→ A ∼ *+
card-A≡0→A∼*+ *+ q =]

card-A≡0→A∼*+ (A] B) q =
(card-A≡0→A∼*+ A (m+n≡0→m≡0 q)
] card-A≡0→A∼*+ B (m+n≡0→n≡0 q)) # o

1

The proofs basically utilise that the monoid of natural numbers

with addition is itself conical.

conical : A] B ∼ *+→ A ∼ *+
conical q = card-A≡0→A∼*+ (m+n≡0→m≡0 (card∼ q))

1

We have noted that the bag monoid (Bag X ; _∼_; *+; _⊎_) is
the free commutative monoid (CM) generated by X . Categorically
speaking, the free structure is part of an adjunction between the

category of CMs and CM-homomorphisms and the category of

setoids and extensional functions. The adjunction entails that CM-

homomorphisms from the free CM over X to some other CMM are

in one-to-one correspondence to functions from X to the carrier
of M . We materialise one direction of this correspondence as a

general recursion scheme, called, well, fold. For this purpose, the
operations and properties of CMs are combined in a record type.

record Commutative-Monoid (X : Set) {| eq : Eq X |} : Set where
field
Y : X
· : X → X → X

·-congruent : ∀ {x x′ y y′ } → x ≈ x′ → y ≈ y′ → x · y ≈ x′ · y′
left-unit : ∀ {x } → Y · x ≈ x

1

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

commutative : ∀ {x y } → x · y ≈ y · x
associative : ∀ {x y z } → (x · y) · z ≈ x · (y · z)

right-unit : ∀ {x } → x · Y ≈ x

right-unit = transitive commutative left-unit
open Commutative-Monoid {|. . .|} public

1
Observe that the record type is parametrised by the carrier and an

equivalence relation (think Haskell’s Eq class extended by proper-

ties) so that we can turn bags into suitable instances.

instance
Free≈ : Eq (Bag X)
Free≈ = record {_≈_ = _∼_; reflexive =];

transitive = _#_; symmetric = f }
Free : Commutative-Monoid (Bag X)
Free = record {_·_ = _]_; ·-congruent = _]_; Y = *+;

associative = U ; left-unit = o; commutative = W }
1

The fold operator turns a function, the action on singletons, into

a CM-homomorphism.

fold : {| eq : Eq Y |} {| M : Commutative-Monoid Y |} →
(X → Y) → Bag X → Y

fold f * x + = f x

fold f *+ = Y

fold f (A] B) = fold f A · fold f B
1

It is plain to see that fold f is the unique CM-homomorphism such

that fold f * x + ≈ f x. Furthermore, fold f is independent of the

representation of bags:

fold∼ : {| eq : Eq Y |} {| M : Commutative-Monoid Y |} →
(f : X → Y) → A ∼ B→ fold f A ≈ fold f B

fold∼ f] = reflexive

fold∼ f (f q) = symmetric (fold∼ f q)
fold∼ f (q # k) = transitive (fold∼ f q) (fold∼ f k)
fold∼ f (q] k) = ·-congruent (fold∼ f q) (fold∼ f k)
fold∼ f o = left-unit
fold∼ f U = associative

fold∼ f W = commutative
1

Now, assuming a suitable instance for natural numbers N with

addition, cardinality is simply given by fold (𝜆 x → 1).

6 CANCELLATION PROPERTIES
The proof of the cancellation properties is the litmus test for any im-

plementation of bags. (Originally, we used an implementation based

on proof-relevant membership, see Remark 3. Proving cancellation

for this representation proved too cumbersome. As a consequence,

we discarded the approach and opted for the representation de-

scribed in this paper.)

The proof of left cancellation proceeds by induction over the

structure of the to-be-cancelled bag.

cancel-left : ∀ A→ A] B1 ∼ A] B2 → B1 ∼ B2
cancel-left * x + q = f o # minus∼ (inl here) (inl here) q # o
cancel-left *+ q = f o # q # o
cancel-left (A1] A2) q = cancel-left A2 (cancel-left A1 (f U # q # U))

1

If the bag is empty, there is little to do. If it is a bag union, we

recursively cancel the terms, one after the other. Perhaps surpris-

ingly, the final case, * x + ⊎ B1 ∼ * x + ⊎ B2, requires work. It is
less straightforward than it seems, because the equivalence not nec-

essarily relates the visible occurrence of x on the left (inl here) to
the visible occurrence on the right (inl here). In general, B1 and B2
may contain further occurrences of x. This motivates the following

generalisation of the singleton case.

minus∼ : (p : x ∈ A) → (q : x ∈ B) → A ∼ B→ A − p ∼ B − q

minus∼ p q A∼B = copy p A∼B # trade (include A∼B p) q
1

In words: given two equivalent bags, A and B, an occurrence of x
in A, an unrelated occurrence of x in B, removing these occurrences

preserves equivalence. To prove the generalised law, we proceed

in two steps. The lemma copy establishes the special case that the

path is the „same“, but the trees are different. The lemma trade deals
with the symmetric situation that the paths are different, but the

tree is the same.

A few pictures probably would not go amiss. Continuing our

running example, Eau-de-Cologne ∼ East-Berlin (1), we remove an

occurrence of the number 1 on both sides, aiming to show:

]
]

* 4 +]

* 7 + *+

]

*+ * 1 +
∼

]
]

* 1 + *+

]

* 4 + * 7 +

1
Recall that the given tree transformation (1), see Figure 4, induces

a path transformation, sending the leftmost occurrence of 1 in the

first tree to the leftmost occurrence of 1 in the other tree. So in the

first step, we establish

]
]

* 4 +]

* 7 + *+

]

*+ * 1 +
∼

]
]

*+ * 1 +

]

* 4 + * 7 +

1
The proof of this equivalence is actually a no-brainer: the equiva-

lence is identical to the original one (1), except for the types. (Do

you see why?) A no-brainer, but laborious as we have to replay

the case analysis of include. Consequently, we define two mutually

recursive functions:

copy : (p : x ∈ A) → (q : A ∼ B) → A − p ∼ B − include q p

copy' : (q : x ∈ B) → (q : A ∼ B) → A − include' q q ∼ B − q
1

Both definitions are rather boring so we only show the first one.

copy p] =]

copy p (f q) = f (copy' p q)
copy p (q # k) = copy p q # copy (include q p) k
copy (inl p) (q] k) = copy p q] k
copy (inr q) (q] k) = q] copy q k

copy (inr p) o = o
copy (inl (inl p)) U = U

1

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

copy (inl (inr q)) U = U

copy (inr r) U = U

copy (inl p) W = W

copy (inr q) W = W
1

Clearly, copy is morally the identity.

As for the second step, it remains to show:

]
]

*+ * 1 +

]

* 4 + * 7 +

∼
]

]

* 1 + *+

]

* 4 + * 7 +
1

The proof proceeds by simultaneous induction over both paths.

paws : (A] B)] C ∼ A] (C] B)
paws = U #]] W
trade : (p : x ∈ A) → (q : x ∈ A) → A − p ∼ A − q

trade (here) (here) =]

trade (inl p) (inl q) = trade p q]]

trade (inl p) (inr q) = (]] to-rear q) # f paws # (f (to-rear p)]])
trade (inr p) (inl q) = (to-rear q]]) # paws # (]] f (to-rear p))
trade (inr p) (inr q) =]] trade p q

1
While the paths agree, we recursively invoke trade. If the paths

diverge, we resort to to-rear. Consider the third equation. The proof
involves three rewrites:

(A1 − p)] A2 ∼ (A1 − p)] ((A2 − q)] * x +)
∼ ((A1 − p)] * x +)] (A2 − q) ∼ A1] (A2 − q)

1
We first move the element to the rear in the right subtree, to-rear q,
then we shift it over to the left, 𝜎 paws, so that we can finally undo

the split, 𝜎 (to-rear p).
Now that all the necessary prerequisites are in place, we can

finally discharge a proof obligation: antisymmetry of the subbag

relation. Recall that A ⊆ B means that there is a “delta bag” Δ such

that A ⊎ Δ ∼ B. The proof strategy is probably clear: if both A ⊆ B
and B ⊆ A hold, then both deltas must be equivalent to the empty

bag. Using the assumptions, we first show:

A] (Δ1] Δ2) ∼ (A] Δ1)] Δ2 ∼ B] Δ2 ∼ A ∼ A] *+
1

Now we can cancel A and invoke conicality. The rest is routine:

⊆-antisymmetric : A ⊆ B→ B ⊆ A→ A ∼ B

⊆-antisymmetric (Δ1 such-that q1) (Δ2 such-that q2) =
let Δ1]Δ2∼*+ = cancel-left (f U # q1]] # q2 # f d)

Δ1∼*+ = conical Δ1]Δ2∼*+
in f d #]] f Δ1∼*+ # q1

1
We have mentioned before that other free structures, lists and

finite sets, can be implemented in a similar way, simply by dropping

or adding axioms. Are these free structures cancellative, as well?

Yes and no. Lists clearly are: A ++ B ∼ A ++ C implies B ∼ C. (The
proof above uses commutativity, see to-rear, but not in an essential

way, so it can be adapted to work with lists.) Finite sets, however,

are not cancellative: {𝑎} ∪ {𝑎} ∼ {𝑎} ∪ {}, but it is not the case
that {𝑎} ∼ {}. (The proof above cannot be extended to work with

idempotency.)

7 DECIDABILITY
We have come pretty far without posing any restrictive assumptions

on the element type such as decidable equality.

≡? : (a b : X) → Decide (a ≡ b)
1

However, for some operations we need to assume decidable equality

for principled reasons. Here is why. Equality is closely tied to a

variety of bag operations and relations.

x ≡ y ↔ * x + \ * y + ∼ *+
x ≡ y ↔ x # * y + ≡ 1

x ≡ y ↔ x ∈ * y +
x ≡ y ↔ * x + ∼ * y +

Consider, for example, bag difference. Using the first characteri-

sation we can reduce equality to the test for emptyness, which is

decidable. Consequently, the implementation of difference must

involve an equality test. Similar arguments apply to the multiplicity

function, written x # A, to the test for membership, written x ∈? A,
and to the test for equivalence, written A ∼? B. This shows, in par-

ticular, that bag implementations based on multiplicity necessarily

require decidable equality.

Now, performing a blind search we can decide membership.

∈? : (x : X) → (A : Bag X) → Decide (x ∈ A)
x ∈? * a + with x ≡? a
... | yes reflexive = yes here
... | no ¬x≡a = no (_ where here→ ¬x≡a reflexive)
x ∈? *+ = no (_ ())
x ∈? (A] B) with x ∈? A
... | yes x∈A = yes (inl x∈A)
... | no ¬x∈A with x ∈? B
... | yes x∈B = yes (inr x∈B)
... | no ¬x∈B = no (_ where

(inl x∈A) → ¬x∈A x∈A
(inr x∈B) → ¬x∈B x∈B)

1
Since there is no notion of “negative” occurrences, bag sum

_⊎ P has no inverse. (You may know the old math joke: “There

are 3 mathematicians in a room; 5 leave the room. How many

mathematicians must enter the room for it to be empty?”) Bag sum

has, however, a left adjoint, bag difference, indirectly defined by

A \ P ⊆ B ↔A ⊆ B ⊎ P
The equivalence establishes a Galois connection: _\ P is left

adjoint to _⊎ P . From the indirect definition we can systematically

derive the following implementation of bag difference, which is

defined by induction over the structure of the subtrahend.

__ : Bag X → Bag X → Bag X

A \ * x + with x ∈? A
... | yes x∈A = A − x∈A
... | no ¬x∈A = A

A \ *+ = A

A \ (B1] B2) = (A \ B2) \ B1
1

In the singleton case, we test whether x is contained in A. If yes,
“bag minus” removes the computed occurrence.

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

There are, at least, three CM-homomorphisms from the bag

monoid into the monoid of natural numbers with addition: cardi-

nality (see Section 5), summing the elements of a bag (not shown),

and the multiplicity of a given element (defined below).

: (x : X) → (A : Bag X) → N
x # * a + with x ≡? a
... | yes x≡a = 1
... | no ¬x≡a = 0
x # *+ = 0
x # (A] B) = (x # A) + (x # B)

1
This defines actually a family of CM-homomorphisms, x #_ is a

CM-homomorphism for each choice of x.
Quite reassuringly, the properties listed in Remark 1 can be

established without too much effort.

A ⊆ B ↔ (∀ x → x # A ≼ x # B) (3)

A ∼ B ↔ (∀ x → x # A ≡ x # B) (4)

x # (A ⊎ B) ≡ (x # A) + (x # B) (5)

x # (A \ B) ≡ (x # A) ¤− (x # B) (6)

At the risk of dwelling on the obvious, we could, in principle, use

the characterisations of A ⊆ B and A ∼ B as definitions, but this

would come with a loss of generality as we would need to assume

decidable equality right from the start (see also Remark 1).

The attentive reader will not have failed to notice that min-

intersection and max-union are missing in the list above. Their

definitions need some additional machinery to be introduced next.

8 VIEWS
Occasionally it is useful to recurse over the cardinality of a bag. To

this end, we provide the following view:

data View (A : Bag X) : Set where
Empty : A ∼ *+→ View A

Laden : (a : X) → (A′ : Bag X) → A ∼ * a +] A′ → View A
1

Under this view, a bag A is either (1) empty: Empty 𝜙 records that A
equivales the empty bag; or (2) non-empty: Laden a A′ 𝜙 splits

the given bag into an element a and a residual bag A′ such that

A ∼ * a + ⊎ A′. In brief, the view allows us to select an element from

a non-empty bag. The following implementation rather arbitrarily

picks the leftmost element, if any.

select : (A : Bag X) → View A

select * x + = Laden x *+ (f d)
select *+ = Empty]

select (A] B) with select A

select (A] B) | Empty q with select B

... | Empty k = Empty (q] k # o)

... | Laden b B′ k = Laden b B′ (q] k # o)
select (A] B) | Laden a A′ q = Laden a (A′] B) ((q]]) # U)

1
To illustrate the use of the view, let us implement one of the

remaining “set-like” operations on bags: min-intersection. The op-

eration is defined by well-founded recursion on _≺_, the standard
strict ordering on the natural numbers. Well-founded recursion can,

for example, be realised using an accessibility predicate [9].

data Accessible (n : N) : Set where
access : (∀ {m} → m ≺ n→ Accessible m) → Accessible n

1
The implementation of min-intersection consists of a worker, called

intersection, and a wrapper, the actual operation _∩_.
intersection : (A B : Bag X) → Accessible (card A) → Bag X

intersection A B (access since) with select A

. . . | Empty q = *+

. . . | Laden a A′ q with a ∈? B

... | yes a∈B = * a +] intersection A′ (B − a∈B) (since (card-� q))

... | no ¬a∈B = intersection A′ B (since (card-� q))
∩ : Bag X → Bag X → Bag X

A ∩ B = intersection A B well-founded
1

The worker takes an additional argument of type

Accessible (card A) that drives the recursion. Each recursive

call is obliged to prove that the cardinality of its first argument

decreases. As a convenience, the library defines:

card-� : A ∼ * a +] A′ → card A′ ≺ card A
1

The wrapper finally calls the worker, providing evidence that the

natural numbers are well-founded, that each natural number is

accessible, well-founded : ∀ {n : N} → Accessible n.
Intersection works by repeatedly calling select, which realises

a “cons” view of bags. Of course, the library wouldn’t be feature-

complete without providing a function that encapsulates this recur-

sion pattern, providing a recursive “list” view.

data List-View (A : Bag X) : Set where
[] : {q : A ∼ *+} → List-View A

:: : (a : X) → {A′ : Bag X } → {q : A ∼ * a +] A′ }
→ List-View A′ → List-View A

1
To reduce clutter, the equivalence proofs and the residual bag are

now implicit arguments, indicated by curly braces. Like intersection,

the actual view function consists of a worker and a wrapper.

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

There are, at least, three CM-homomorphisms from the bag
monoid into the monoid of natural numbers with addition: car-
dinality (see Section 5), summing the elements of a bag (not shown),
and the multiplicity of a given element (defined below).

∶ (x ∶ X) → (A ∶ Bag X) → ℕ
x # ⟅ a ⟆ with x ≡? a
... ∣ yes x≡a = 1
... ∣ no ¬x≡a = 0
x # ⟅⟆ = 0
x # (A ⊎ B) = (x # A) + (x # B)

This defines actually a family of CM-homomorphisms, x #_ is a
CM-homomorphism for each choice of x .

Quite reassuringly, the properties listed in Remark 1 can be
established without too much effort.

A ⊆ B ↔ (∀ x → x # A ≼ x # B) (3)
A ∼ B ↔ (∀ x → x # A ≡ x # B) (4)

x # (A ⊎ B) ≡ (x # A) + (x # B) (5)
x # (A ∖ B) ≡ (x # A) ∸ (x # B) (6)

At the risk of dwelling on the obvious, we could, in principle, use
the characterisations of A ⊆ B and A ∼ B as definitions, but this
would come with a loss of generality as we would need to assume
decidable equality right from the start (see also Remark 1).

The attentive reader will not have failed to notice that min-
intersection and max-union are missing in the list above. Their
definitions need some additional machinery to be introduced next.

8 VIEWS
Occasionally it is useful to recurse over the cardinality of a bag. To
this end, we provide the following view:

data View (A ∶ Bag X) ∶ Set where
Empty ∶ A ∼ ⟅⟆ → View A
Laden ∶ (a ∶ X) → (A′ ∶ Bag X) → A ∼ ⟅ a ⟆ ⊎ A′ → View A

Under this view, a bag A is either (1) empty: Empty ϕ records that A
equivales the empty bag; or (2) non-empty: Laden a A′ ϕ splits
the given bag into an element a and a residual bag A′ such that
A ∼ ⟅ a ⟆ ⊎ A′. In brief, the view allows us to select an element
from a non-empty bag. The following implementation rather arbi-
trarily picks the leftmost element, if any.

iselect ∶ (A ∶ Bag X) → IView A
iselect ⟅ x ⟆ = Laden x ⟅⟆ ⦃ 𝜎 𝜌 ⦄
iselect ⟅⟆ = Empty ⦃ 𝜄 ⦄
iselect (A ⊎ B) with iselect A
iselect (A ⊎ B) ∣ Empty with iselect B
... ∣ Empty = Empty ⦃ it ⊎ it ⨾ o ⦄
... ∣ Laden b B′ = Laden b B′ ⦃ it ⊎ it ⨾ o ⦄
iselect (A ⊎ B) ∣ Laden a A′ = Laden a (A′ ⊎ B) ⦃ it ⊎ 𝜄 ⨾ 𝛼 ⦄

To illustrate the use of the view, let us implement one of the
remaining “set-like” operations on bags: min-intersection. The op-
eration is defined by well-founded recursion on _≺_, the standard
strict ordering on the natural numbers. Well-founded recursion can,
for example, be realised using an accessibility predicate [9].

data Accessible (n ∶ ℕ) ∶ Set where
access ∶ (∀ {m } → m ≺ n → Accessible m) → Accessible n

The implementation of min-intersection consists of a worker, called
intersect , and a wrapper, the actual operation _∩_.

intersect ∶ (A B ∶ Bag X) → Accessible (card A) → Bag X
intersect A B (access since) with select A
… ∣ Empty ϕ = ⟅⟆
… ∣ Laden a A′ ϕ with a ∈? B
... ∣ yes a∈B = ⟅ a ⟆ ⊎ intersect A′ (B − a∈B) (since (card-≻ ϕ))
... ∣ no ¬a∈B = intersect A′ B (since (card-≻ ϕ))
∩ ∶ Bag X → Bag X → Bag X
A ∩ B = intersect A B well-founded

Theworker takes an additional argument of typeAccessible (card A)
that drives the recursion. Each recursive call is obliged to prove that
the cardinality of its first argument decreases. As a convenience,
the library defines:

card-≻ ∶ A ∼ ⟅ a ⟆ ⊎ A′ → card A′ ≺ card A

The wrapper finally calls the worker, providing evidence that the
natural numbers are well-founded, that each natural number is
accessible, well-founded ∶ ∀ {n ∶ ℕ} → Accessible n.

Intersection works by repeatedly calling select , which realises
a “cons” view of bags. Of course, the library wouldn’t be feature-
complete without providing a function that encapsulates this recur-
sion pattern, providing a recursive “list” view.

data List-View (A ∶ Bag X) ∶ Set where
[] ∶ {ϕ ∶ A ∼ ⟅⟆} → List-View A
∶∶ ∶ (a ∶ X) → {A′ ∶ Bag X } → {ϕ ∶ A ∼ ⟅ a ⟆ ⊎ A′ }

→ List-View A′ → List-View A

To reduce clutter, the equivalence proofs and the residual bag are
now implicit arguments, indicated by curly braces. Like intersection,
the actual view function consists of a worker and a wrapper.

list-view′ ∶ (A ∶ Bag X) → Accessible (card A) → List-View A
list-view′ A (access since) with select A
... ∣ Empty ϕ = [] {ϕ = ϕ }
... ∣ Laden a A′ ϕ = _∶∶_ a {ϕ = ϕ } (list-view′ A′ (since (card-≻ ϕ)))
list-view ∶ (A ∶ Bag X) → List-View A
list-view A = list-view′ A well-founded

For variety, we use the list view to implement max-union —
min-intersection can be rewritten accordingly.

union ∶ {A ∶ Bag X } → List-View A → (B ∶ Bag X) → Bag X
union [] B = B
union (a ∶∶ A′) B with a ∈? B
... ∣ yes a∈B = ⟅ a ⟆ ⊎ union A′ (B − a∈B)
... ∣ no ¬a∈B = ⟅ a ⟆ ⊎ union A′ B

∪ ∶ Bag X → Bag X → Bag X
A ∪ B = union (list-view A) B

The tests for equivalence A ~? B and containment A ⊆? B can
be be realised using similar definitions.

For variety, we use the list view to implement max-union —

min-intersection can be rewritten accordingly.

union : {A : Bag X } → List-View A→ (B : Bag X) → Bag X

union [] B = B

union (a :: A′) B with a ∈? B
... | yes a∈B = * a +] union A′ (B − a∈B)
... | no ¬a∈B = * a +] union A′ B
∪ : Bag X → Bag X → Bag X

A ∪ B = union (list-view A) B
1

The tests for equivalence A ∼? B and containment A ⊆? B can

be be realised using similar definitions.

IFL 2023, August 29–31, 2023, Braga, Portugal Alexander Dinges and Ralf Hinze

Turning to properties, the following laws explain the prefixes

“min” and “max” (see also Remark 1). They can be shown using

fairly straightforward inductive proofs.

x # (A ∩ B) ≡ (x # A) ↓ (x # B)
x # (A ∪ B) ≡ (x # A) ↑ (x # B)

1
The characterisations in terms of multiplicities are instrumental for

establishing laws, such as,

A ∩ B ⊆ A ∪ B ⊆ A] B
1

which follows from a ↓ b ≼ a ↑ b ≼ a + b. In particular, one can

show that bags form a distributive lattice taking min-intersection

as meet and max-union as join. The proof is essentially based on

the fact that the natural numbers with minimum and maximum

form a distributive lattice.

9 RELATEDWORK
Our work is closest in spirit to Bird’s “Lectures on Constructive

Functional Programming” [3], which introduce a calculus for de-

riving functional programs from their specification. In particular,

Bird suggests a common notation for lists, bags, and sets, which

has to become known as join lists. In some sense, our Bag datatype

materialises his notation.
2
And, of course, we could follow Bird’s

lead and use the same datatype for trees, lists, bags, and sets, simply

by endowing it with different equivalence relations.

Approaches based on multiplicity. The Coq standard library [13]

defines bags over X as functions of type X → N. An approach

based on multiplicities, but now with finite maps X →
fin

N, is

also used by Angiuli et al. in one of their examples. As pointed out

in Remarks 1 and 2, these approaches depend fundamentally on

decidable equality, which makes them less widely applicable.

Approaches based on sequence types. We have noted that there

are two degrees of freedom in implementing bags based on se-

quence types: the type itself and the notion of equivalence. Several

combinations have been presented and implemented in other pub-

lications, repositories, or by ourselves. The following table shows

how the 2-dimensional design space is populated. Sequence types

are organized in columns and notions of equivalence in rows.

Fin n→ X cons lists join lists

multiplicity (4) [1] derived, see (4)
membership (2) [8], [14] derived, see §4
permutations [5] ([8])

inductive datatype we are here

It is important that the equivalence on bags supports element types

with user-defined equality. Equivalence based on proof-relevant

membership cannot afford this. In general, evidence for x ∈ A con-

sists of a “path” in A and a proof that x is equal to the element to

which the path leads. The problem is that proof-relevance of the

equality type now matters. In other words, an equivalence based on

proof-relevant membership does not only compare paths but also

the number of equality proofs. Therefore, the approach works only

in special cases, e.g. for propositional equality or when equality on

the element type is actually proof-irrelevant.

2
On a historical note, the notation for bag brackets, * and +, was designed by the Pro-

gramming Research Group at Oxford (personal communication with Jeremy Gibbons).

The approaches based on proof-relevant membership and on

permutations are defined via bijections. Hence, we have to deal

with properties concerning functions which is often inconvenient

(see Remark 3). By contrast, working with inductively defined proof

trees is a lot smoother, as Agda is tailored towards that purpose.

Loosely speaking, there is a difference in the underlying philoso-

phies. The former approaches are piecemeal, focusing on individual

elements and path transformations, while the proof tree approach

is holistic, considering the entire tree and tree transformations.

Approaches based on quotient types. The bag type and the equiv-

alence type can be merged into a higher inductive type (HIT) in

Cubical Agda [15]:

data Bag (X : Set) : Set where
*_+ : X → Bag X

*+ : Bag X

] : Bag X → Bag X → Bag X

o : {A : Bag X } → *+] A ≡ A

W : {A B : Bag X } → A] B ≡ B] A

U : {A B C : Bag X } → (A] B)] C ≡ A] (B] C)
truncation : ∀ (A B : Bag X) → (p q : A ≡ B) → p ≡ q

1
Observe that equivalence and congruence axioms are not needed,

which simplifies equational reasoning about bags and defining

functions from bags. The truncation axiom enforces that equality

proofs of the same type are themselves equal — loosely speaking,

equality proofs are unique. This technicality is generally required

for quotient types.

Generally, bag types as HITs can be defined by taking an arbi-

trary, inductively defined sequence type, adding appropriate path

constructors for equalities. For example, the Agda Cubical standard

library [15] and Pitts [11] define bags as lists with the equality:

a :: b :: as ≡ b :: a :: as
1

Choudhury and Fiore [6] use the same underlying sequence type

but use a minor variation of the law above:

as ≡ b :: cs→ a :: cs ≡ bs→ a :: as ≡ b :: bs
1

Overall, the design choices boil down to the ones shown below.

cons lists join lists

(higher) inductive datatype [6], [15], [11] [2], [7], [15]

Without a doubt, higher inductive types are attractive from a

theoretical point of view. But it remains to be seenwhether there are

also practical benefits in terms of proof efficiency and perspicuity.

10 CONCLUSION
When we teach functional programming we never tire of repeat-

ing the following mantra: “The basic building blocks of functional

programs are type declarations — a type describes data — and func-

tion definitions — a function operates on data.” Inductive datatypes

are at the heart of functional programming (not the 𝜆-calculus),
enabling an attractive equational style based on pattern matching

and recursion. The lesson we have learned is that we better stick to

our own advice, especially in a dependently typed setting, where

evidence is data and proofs are programs.

What’s in a Bag? IFL 2023, August 29–31, 2023, Braga, Portugal

For a course on program verification, we tried several implemen-

tations of bags. The one that worked best and is reported on in this

paper is based on inductive datatypes. Bags are given by bag expres-

sions quotiented by laws of commutative monoids. The syntax is

described by a datatype, as is the evidence that two expressions are

equivalent. The approach has both theoretical and practical merits.

The requirements on the meta-theory and on the element type are

minimal. Agda’s proof assistant is tailored to inductive datatypes:

the goals (e.g. for equivalence proofs) are short and clear, proof

automation (Agsy) works reasonably well. As a further bonus, as

we deal with expression trees and proofs trees, programs and proofs

have a nice algorithmic touch.

There is still work to be done. For the purposes of presentation,

we have made the simplifying assumption that the equivalence on

the element type is given by propositional equality (see Section 4).

Of course, a bag library based on this assumption is not going to fly.

The good news is that the approach can be adapted to work with an

arbitrary underlying equivalence relation — some adjustments are

required here and there. What remains is largely an engineering

issue: How to proceed in practical terms, should we switch to se-

toids or employ “type classes”, based on instance declarations and

instance arguments (see Section 5)? We hope to be able to report

on our experiences in the not too distant future.

ACKNOWLEDGMENTS
We wish to thank Jacques Carette for pointing out an error in an

earlier version of this paper and for indicating relevant references.

REFERENCES
[1] Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021. Internal-

izing Representation Independence with Univalence. Proc. ACM Program. Lang.
5, POPL, Article 12 (jan 2021). https://doi.org/10.1145/3434293

[2] Henning Basold, Herman Geuvers, and Niels van der Weide. 2017. Higher induc-

tive types in programming. Journal of Universal Computer Science 23, 1 (2017),
63–88.

[3] Richard S. Bird. 1988. Lectures on Constructive Functional Programming. In

Constructive Methods in Computer Science, Manfred Broy (Ed.). Springer-Verlag.

[4] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda - A

Functional Language with Dependent Types. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5674), Stefan
Berghofer, Tobias Nipkow, Christian Urban, andMakariusWenzel (Eds.). Springer,

73–78. https://doi.org/10.1007/978-3-642-03359-9_6

[5] Jacques Carette, Musa Al-hassy, and Wolfram Kahl. 2018. A tale of theories and

data-structures. https://wiki.hh.se/wg211/images/9/94/M18Carette-Slides.pdf

[6] Vikraman Choudhury and Marcelo Fiore. 2019. The finite-multiset construction

in HoTT.

[7] Vikraman Choudhury and Marcelo Fiore. 2023. Free Commutative Monoids in

Homotopy Type Theory. Electronic Notes in Theoretical Informatics and Computer
Science (2023).

[8] Nils Anders Danielsson. 2012. Bag equivalence via a proof-relevant membership

relation. In Interactive Theorem Proving: Third International Conference, ITP 2012,
Princeton, NJ, USA, August 13-15, 2012. Proceedings 3. Springer, 149–165.

[9] Bengt Nordström. 1988. Terminating General Recursion. BIT 28, 3 (sep 1988),

605–619. https://doi.org/10.1007/BF01941137

[10] L. C. Paulson. 1996. ML for the Working Programmer (2nd ed.). Cambridge

University Press.

[11] Andrew M Pitts. 2020. Quotients in Dependent Type Theory. In 5th International
Conference on Formal Structures for Computation and Deduction. https://www.cl.

cam.ac.uk/~amp12/talks/FSCD2020-s3-slides.pdf

[12] Aaron Stump. 2016. Verified Functional Programming in Agda. Association for

Computing Machinery and Morgan & Claypool.

[13] The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.

5281/zenodo.7313584

[14] The Agda Community. 2023. Agda Standard Library. https://github.com/agda/

agda-stdlib

[15] The agda/cubical development team. 2018–2023. The agda/cubical library. https:

//github.com/agda/cubical/

[16] Twan van Laarhoven. [n. d.]. The complete correctness of sorting. https:

//www.twanvl.nl/blog/agda/sorting

https://doi.org/10.1145/3434293
https://doi.org/10.1007/978-3-642-03359-9_6
https://wiki.hh.se/wg211/images/9/94/M18Carette-Slides.pdf
https://doi.org/10.1007/BF01941137
https://www.cl.cam.ac.uk/~amp12/talks/FSCD2020-s3-slides.pdf
https://www.cl.cam.ac.uk/~amp12/talks/FSCD2020-s3-slides.pdf
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://github.com/agda/cubical/
https://github.com/agda/cubical/
https://www.twanvl.nl/blog/agda/sorting
https://www.twanvl.nl/blog/agda/sorting

	Abstract
	1 Introduction
	2 Use of Bags in Program Verification
	3 Representation of Bags
	4 Relations on Bags
	5 Operations on Bags
	6 Cancellation Properties
	7 Decidability
	8 Views
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

