-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Software-Engineering Seminar, Winter 2017/18
IATEX Tutorial

Peter Zeller

AG Softech
FB Informatik
TU Kaiserslautern

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

TEX

You write your document in plain text with commands that describe its
structure and meaning.

The KTEX program processes your text and produces PDF.

Idea: Focus on content, let IATEX do the layout.

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 2/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

TEX

You write your document in plain text with commands that describe its
structure and meaning.

The KTEX program processes your text and produces PDF.

Idea: Focus on content, let IATEX do the layout.
m Use provided style
m Avoid manual layout adjustments
= Avoid manual line and page breaks

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 2/ 31

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Compiler and editors

m TeXStudio
Kile
TeXlipse
Emacs
Atom

Demo

Peter Zeller Software-Engineering Seminar, Winter 2017/18 3/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Compiler and editors

m TeXStudio
m Kile

m TeXlipse
m Emacs

= Atom

m..

m Compile often, errors not always useful, focus on first error
m Use synctex to jump from PDF to source

m Configure a spellchecker for your editor
m Online editors like Overleaf or Sharelatex not recommended

Peter Zeller Software-Engineering Seminar, Winter 2017/18

3/31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Text, newlines, and paragraphs

BTEX PDF
Linebreaks Linebreaks and additional spaces
and additional spaces are are ignored in the output.

ignored in the output.

Empty lines separate paragraphs.

Manual linebreaks \\
are possible, but
should be avoided.

Empty lines separate paragraphs.

Manual linebreaks
are possible, but should be avoided.

Peter Zeller Software-Engineering Seminar, Winter 2017 /18

4/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Special symbols

BTEX PDF
Double ¢‘Quotes’’ Double “Quotes” and single
and single ‘quotes’. ‘quotes’.

Wrong "quotes”. Wrong " quotes” .

% a comment

Peter Zeller Software-Engineering Seminar, Winter 2017/18 5/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Commands

BTEX

PDF

Peter Zeller

Commands start with a backslash,
for example: \textbf bold font.

Curly braces group text, for
example: \textbf{bold font}.

Square brackets for optional
arguments, as in
\1lstinline[language=Javal{if (x
<3) throw new Exception()}

Commands start with a backslash,
for example: bold font.

Curly braces group text, for exam-
ple: bold font.

Square brackets for optional argu-
ments, as in if (x<3) throw new
Exception()

Software-Engineering Seminar, Winter 2017 /18

/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Other special symbols

KTEX

PDF

Special symbols can be escaped
with a backslash.

For example: \$ \% \& \# _

Peter Zeller

Software-Engineering Seminar, Winter 2017/18

Special symbols can be escaped
with a backslash.

For example: $ % & # _

7/31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Document structure

-1 \part{...}
\chapter{...}
\section{...}
\subsection{...}
\subsubsection{...}
\paragraph{...}
\subparagraph{...}

1k~ WO

\section, \subsection and \paragraph usually enough for papers.
\part and \chapter are only available in report and book document classes.

Add a * to remove numbers, e.g. \section*{...}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 8/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Lists
ETEX PDF
\begin{itemize} m Unordered
\item Unordered = List
\item List
\item \dots ..
\end{itemize}
\begin{enumerate} Numbered
\item Numbered list
\%tem list
\item \dots
\end{enumerate}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 9/ 31

-)
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Definition lists

BTEX PDF
\begin{description} Word A Word A'is . ..
\item[Word AJ] Word A is \dots Word B Bis ...
\item[Word B] B is \dots

\end{description}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 10/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Tables

\begin{tabular}{lcr}

Place & Food & Price \\
Ausgabe 1 & Rahmbraten & 2.40 \\
Ausgabe 2 & Tagliatelle & 2.15 \\

Atrium & Kebab & 3.90 \\
\end{tabular}
Place Food Price

Ausgabe 1 Rahmbraten 2.40€
Ausgabe 2 Tagliatelle 2.15€
Atrium Kebab 3.90€

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 11/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Tables

\begin{tabular}{|1l|c|r|}

Place & Food & Price \\ \hline
Ausgabe 1 & Rahmbraten & 2.40 \\
Ausgabe 2 & Tagliatelle & 2.15 \\

Atrium & Kebab & 3.90 \\
\end{tabular}
Place ‘ Food ‘ Price

Ausgabe 1 | Rahmbraten | 2.40€
Ausgabe 2 | Tagliatelle | 2.15€
Atrium Kebab 3.90€

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 12/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Code Listings

\begin{lstlisting}

public static void main(String[] args) {
// some comment
System.out.println(”"Hello World!");

3
\end{1lstlisting}

public static void main(String[] args) {
// some comment
System.out.println(”"Hello World!");

}

Peter Zeller Software-Engineering Seminar, Winter 2017/18

13/ 31

-)
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Code Listings

\begin{lstlisting}[language=Java]

public static void main(String[] args) {
// some comment
System.out.println(”"Hello World!");

3
\end{1lstlisting}

public static void main(String[] args) {
// some comment
System.out.println("Hello_World!");

}

Peter Zeller Software-Engineering Seminar, Winter 2017/18

14/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Code Listings

\begin{lstlisting}[language=Java,morekeywords={out,println}, numbers=
left]
public static void main(String[] args) {

// some comment

System.out.println("Hello World!");

3
\end{1lstlisting}

public static void main(String[] args) {
// some comment
System.out.println("Hello_World!");

AN =

3

Peter Zeller Software-Engineering Seminar, Winter 2017/18

15/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Figures

public static void main(String[] args) {
// some comment
System.out.println("Hello_World!");

3

Figure 1: A simple Java program

\begin{figure}

\begin{lstlisting}[language=Java]

public static void main(String[] args) {
// some comment
System.out.println(”"Hello World!");

3

\end{1lstlisting}

\caption{A simple Java program}

\label{fig: java_example}

\end{figure}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 16/ 31

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Labels and References

Use the label name to reference Figure \ref{fig:java_example}.

Use the label name to reference Figure 1.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 17/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Labels and References

Use the label name to reference Figure \ref{fig:java_example}.

Use the label name to reference Figure 1.

Labels can also be used to reference sections:

\section{Part1}
\label{sec:partl}

\subsection{Details}
\label{sec:partia}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 17/ 31

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Images

\includegraphics[width=10cm]{bitcoin.png}

10 00 80 kTN
1 o 0o b
LT
108 00
0%
1000
1500
100
0%
blo _—
w01 "
2010 @11 2012 2013 @14 205
——Free ——ohtiky

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 18/ 31

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Images

\includegraphics[width=10cm]{bitcoin_hd.png}

10,000.00 350%
1,000 00 300%
250%
100.00
200%
10.00
150%
100
100%
0.10 0%
001 0%
2010 2011 2012 2013 2014 2015
— Price Volatility

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 19/ 31

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Images

\includegraphics[width=10cm]{bitcoin.pdf}

10,000.00 350%
1,000.00 300%
250%
100.00
200%
10.00
150%
1.00
100%
0.10 0%
0.01 0%
2010 2011 2012 2013 2014 2015

m—— Price == \/Olatility

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 20/ 31

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Images

Use images in Figures.
Use vector images (pdf) instead of rasterized images (png, jpg) if possible.

Use your own graphics if possible, otherwise reference source.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 21/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Formulas

Formulas can be used inline
$\sum_{i=1}"\infty {6 \over i"2} = \pi“2$
or in a block:

\[\sum_{i=1}"\infty {6 \over i"2} = \pi“2 \]

Math formulas can be used inline Y2, & = 72 or in a block:

Peter Zeller Software-Engineering Seminar, Winter 2017/18 22/ 31

/

TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Formulas

Use detexify (http://detexify.kirelabs.org/) to find Latex symbols.

Detexify \::Iassify syrnbo\s:\

X

Want a Mac app?

Lucky you. The Mac app s finally stable
enough. See how it works on Vimeo.
Download the latest version here.

Restriction: In addition to the LaTeX
command the unlicensed version will copy a
reminder to purchase a license to the
clipboard when you select a symbel.

You can purchase a license here:

Peter Zeller

Score: 0.07277014703100537
\delta

mathmode

Score: 0.12630502834054502
\usepackage{ upgreek }
\updelta

mathmode

Score: 0.14528456106083634
\usepackage{ amssyrb }
\mathcal{s}

mathmode

Q‘Cn‘m'@;

Score: 0.15172552038011866
\usepackage{ amssymb }
\mathcal{G}

mathmode

9

The symbol Is not in the list? Show more

Score: 0.1563778433045574
\usepackage{ tipa }
\textscriptg

textmode

Did this help?

Software-Engineering Seminar, Winter 2017/18

23/ 31

http://detexify.kirelabs.org/

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Citations
Add Bibtex entry to references.bib:

@inproceedings{dobedobedo,

3

author = {Sam Lindley and
Conor McBride and
Craig McLaughlin},
title = {Do be do be do},
booktitle = {Proceedings of the 44th {ACM} {SIGPLAN} Symposium on
Principles of Programming Languages,
{POPL} 2017, Paris, France, January 18-20,

20173,
year = {20173},
url = {http://dl.acm.org/citation.cfm?id=3009897},

Reference in Text:

Frank \cite{dobedobedo} is a language with effect handlers but no
separate notion of function: a function is but a special case of a
handler.

Peter Zeller Software-Engineering Seminar, Winter 2017 /18

24/

31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Citing online resources

@misc{discord,

title = {How Discord Stores Billions of Messages},

author = {Stanislav Vishnevskiy},

howpublished = {\url{https://blog.discordapp.com/how-discord-stores-
billions-of-messages-7fa6ec7ee4c7}},

note = {Accessed: 2017-10-12}
3

Peter Zeller Software-Engineering Seminar, Winter 2017/18 25/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Structure

and discuss our experiences reporting these vulnerabilities to de-
velopers, who have confirmed several thus far. We evaluate which
databases provide sufficiently strong isolation guarantees to prevent
these attacks. Of the 22 vulnerabilities, 17 occur due to incorrect
transaction usage and are therefore not preventable without substan-
tial code modification. We investigate common program behavior
among vulnerable and non-vulnerable code paths and present con-
structive strategies for preventing attacks.

The remainder of this paper proceeds as follows. Section 2 defines
ACIDRain attacks. In Section 3, we develop and formally motivate
the 2AD analysis theory. Section 4 describes our experiences detect-
ing and exploiting real vulnerabilities in eCommerce applications.
Section 5 discusses related work, and Section 6 concludes.

2. ACIDRain ATTACKS

Tn thic cartinn wa dafina AC'TNR ain attarkc mara nracicalyy and

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 26/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Structure

Peter Zeller

AU LULAUUILAL UPULAWULS. 13 CUTLET WO L ST UTUCHIE I 5 YOLEITE SLALICALLY
maps operations over the datatype to a particular consistency level
available on the store, and provably validates the correctness of the
mapping. The paper makes the following contributions:

We introduce QUELEA, a shallow extension of Haskell that
supports the description and validation of replicated data types
found in an ECDS. Contracts are used to specify fine-grained
application-level consistency properties, and are statically ana-
lyzed to assign the most efficient and sound store consistency
level to the corresponding operation.

QUELEA supports coordination-free transactions over arbitrary
datatypes. We extend our contract language to express fine-
grained transaction isolation guarantees, and utilize the contract
enforcement system to automatically assign the correct isolation
level for a transaction.

Software-Engineering Seminar, Winter 2017 /18

27/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Structure

Peter Zeller

The rest of the paper is organized as follows. The next section
describes the system model. We describe the challenges in program-
ming under eventual consistency, and introduce QUELEA contracts
as a proposed solution to overcome these issues in § 3. § 4 pro-
vides more details on the contract language, and its mapping to
store consistency levels, along with meta-theory for certifying the
correctness of the mapping. § 5 introduces transaction contracts and
their classification. § 6 describes the implementation of QUELEA on
top of Cassandra. § 7 discusses experimental evaluation. § 8 and 9
present related work and conclusions.

2. System Model

In this section, we describe the system model and introduce the
primitive relations that our contract language is seeded with. Figure 1
presents a schematic diagram of our system model. The distributed

Software-Engineering Seminar, Winter 2017 /18

28/ 31

H

TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

Sentence and Paragraph length

Peter Zeller

serializable behavior during concurrent API calls. That is, while
the gold standard of transaction isolation (serializable isolation)
guarantees equivalence to some serial execution of transactions, not

all databases will enforce sel ability. Some databases do not
provide serializability as an option at all, while others allow appli-
cations to select a weaker isolation mode [17, 19]. Under weaker
isolation levels, transactions are subject to an array of behaviors that
cannot occur under serial execution, the exact set of which depends
on the particular isolation level and database [17]. We call these
conventional isolation anomalies level-based isolation anomalies
as they arise due to the database executing under non-serializable
isolation levels.

Second, independent of the isolation level used, the transaction
programming model requires the application to correctly encap-
sulate its logic within transactions. In the absence of explicit
BEGIN TRANSACTION and COMMIT/ABORT commands, by default,
many databases such as MySQL and PostgreSQL automatically
execute each SQL operation as a separate transaction. As a result,
if a web application performs multiple database operations with-
out using transactions while servicing a single API request, then
concurrent API requests may result in behavior that could not have
arisen during a serial execution of API calls. We call these isolation
anomalies arising from a lack of transactional encapsulation scope-
based isolation anomalies. In this paper, we consider scoping at the
level of individual API calls.

Given a set of isolation anomalies, we must determine whether
any of these anomalies result in significant application behavior:

C2: Sensitive invariants. The anomalies arising from concurrent
access lead to violations of application invariants.

In general, per Kung and Papadimitriou [45], every anomaly is
problematic for some application; however, for a given application,
is a given anomaly problematic? Again borrowing from the classical
transaction processing literature, we capture key application proper-
ties via invariants, or logical predicates capturing an application’s
consistency criteria [34]. For example, an application might have
an invariant that user IDs within a database are unique. Another
application might specify that total revenue equals the sum of total
orders placed. Each invariant is susceptible to violation under a
particular set of anomalies,

cally identifies potential isolation anomalies. Determining invariants
is more complicated, requiring either user interaction, invariant min-
ing. or program analysis [32,33]. As a result, in this paper we
focus on a specific, concrete st of invariants found in eCommerce
applications and examine a set of popular eCommerce applications
to determine their susceptibility to attacks on these key invariants.

Threat model. We assume that an attacker can only access the
web application via concurrent requests against publicly-accessible
APIs (c.g.. HTTP, REST). That s, to perform an ACIDRain attack,
the attacker does not require access to the application server, data-
base server, execution environment, or logs. Our proposed analysis
techniques (Section 3) use full knowledge of the database schema
and SQL logs, but, once identified, an attacker can exploit the vul-
nerabilities we consider here using only programmatic APIs.? This
threat model applies to most Internet sites today.

3. 2AD: DETECTING ANOMALIES

ACIDRain attacks stem from anomalies that occur during con-
current execution. Detecting these anomalies is challenging. Many
potential anomalies are never triggered under normal operation due
to limited rendering simple observation ineffective.
We could use static analysis tools [50] to analyze an application’s
susceptibility to attacks. However, web applications are written
using a variety of frameworks and languages. As a result, static
analysis tools would necessarily have limited applicability.

To address these challenges, we developed a new, cross-platform
methodology for detecting potential level-based and scope-based
anomalies in web applications by analyzing logs of typical database
activity. We call this approach Abstract Anomaly Detection (2AD).
Figure 2 shows an overview of the 2AD workflow.

Overview. The core idea behind 2AD is to execute API calls
against a live application and database to generate a (possibly se-
quential) trace of database activity, then analyze the trace for po-
tential anomalies that could arise under concurrent execution. This
approach leverages the facts that our target applications all i.) expose
API endpoints (e.g., via HTTP) that can be triggered programmati-

That is, to efficiently identify vulnerabilities, our analysis makes use of

non-public information in the form of database logs (e.g. SQL traces) and
Aatahace crhemac Hevususr tha unlasrahilities thameeluec an ha svalited

Software-Engineering Seminar, Winter 2017/18

29/ 31

- "
I ' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Linking sections

AmAav tl A e~ VA U AameATas Uva v vera~ AV vasw e~ A asaamasamass ¢ . evmae ey

more fine-grained analysis and is a worthwhile area for future work.
However, despite its limitations, 2AD has proven a useful tool in
analyzing real applications—the subject of the next section.

4. ACIDRain IN THE WILD

Having described how to use database traces to identify possible
anomalies, in this section we describe how to use these this approach
to detect vulnerabilities and subsequently perform ACIDRain at-
tacks. We apply a prototype 2AD analysis tool to a suite of 12
eCommerce applications, identifying 22 new ACIDRain attacks.
Section 4.1 describes how to produce vulnerabilities from anoma-
lies, and Section 4.2 details our experience finding vulnerabilities in
self-hosted eCommerce applications.

4.1 From Anomalies to Vulnerabilities

Peter Zeller Software-Engineering Seminar, Winter 2017 /18 30/ 31

/

TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

Use examples

Peter Zeller

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT

In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak ist
a range of concurrency anomali
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have a dy occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and

1 | def withdraw(amt, user_id): (a)
2| bal = readBalance(user_id)

3 if (bal >= amt):

4 writeBalance(bal — amt, user_id)

1 | def withdraw(amt, user_id): (b)
2| beginTxn()

3| bal = readBalance(user_id)

4 if (bal >= amt):

5 writeBalance(bal — amt, user_id)

6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100 > $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SFIFCT FOR 1IPDATF is nsed. While this scenario closelv re.

Software-Engineering Seminar, Winter 2017/18

31/ 31

