
Programming Distributed Systems
01 Introduction

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 59

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 59

Large-scale distributed systems

All of these applications and systems have something in common:

Global-scale user base (and users are so annoying with all their
demands and expectations)
Composed of a myriad of services (storage services, web services,
membership services, authentication service, . . .)
Materialized by a huge number of machines, often scattered
through-out the world
Very profitable (with some exceptions . . .)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 59

What can possibly go wrong . . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 59

Sometimes, voodoo is involved

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 59

Sometimes, problems can be really expensive

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 59

Sometimes, just everything goes wrong

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 59

And yesterday. . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 59

The real cost of downtime

For the Fortune 1000, the average total cost of unplanned application
downtime per year is $1.25 billion to $2.5 billion.
The average hourly cost of an infrastructure failure is $100,000 per
hour.
The average cost of a critical application failure per hour is $500,000
to $1 million.

– Source: Alan Shimal, https://devops.com/real-cost-downtime/, Feb 11, 2015

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 59

High availability
Availability % Downtime per year per month per day
90% 36.5 days 72 hours 2.4 hours
95% 18.25 days 36 hours 1.2 hours
99% 3.65 days 7.2 hours 14.4 min
99.5% 1.83 days 3.6 hours 7.2 min
99.9% 8.76 hours 43.8 min 1.44 min
99.99% 52.56 min 4.38 min 8.64 s
99.999% 5.26 min 25.9 s 864.3 ms
99.9999999% 31.5569 ms 2.6297 ms 0.0864 ms

Examples:

Amazon EC2’s: 30% bonus for availability of < 99%/month.
Google GSuite: Adds 15 days extra for uptime < 95%/month, 3 days for <
99.99%/month.
Deutsche Telekom: average availability for internet connections is 97%/year.
Ericsson AXD301, a high-performance highly-reliable ATM switch from 1998, has
shown 99.9999999% in 8 month trial period.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 59

Organization of this course

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 59

The Basics

Lecturer: Annette Bieniusa
Assistant: Peter Zeller

Lectures
Exercises

Mon + Tue 10:00 - 11:30
Wed 15:30 - 17:00

Room 48-453
Room 32-411

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 59

Exercises

Mix of theory and practice
You will learn a distributed programming language!
Implementation of classical algorithms
Building a fault-tolerant and resilient middleware

Bi-weekly exercise sheets
Final project in second half of term

Checkout installation instructions for Erlang on our webpage!
Bring your laptop on Wednesday!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 59

Exam

Oral exam between August 22-28 or in November
Registration with examination office (Prüfungsamt) and our
secretary
More information later in the course

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 59

Reading list

[1] [3] [2]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 59

Goal of this course

Understanding the intrinsic nature of problems in distributed
computing, understanding under which conditions they can be solved,
and employing verified and correct modular solutions.

How do you know what are the components that are currently
part of your system?
How do you propagate information to a large number of nodes
(i.e. components)?
How do you ensure that data is not lost?
How do you prevent that nodes make inconsistent decisions and
mess things up?
How do you check whether a component (i.e, server) is still active?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 59

Learning objectives

You will be able to

explain the challenges regarding time and faults in a distributed
system
provide formal definitions for time models, fault models and
consistency models
comprehend and develop models of a distributed system in a
process calculus
describe the algorithms for essential abstractions
implement basic abstractions for distributed programming
explain the virtues and limitations of major distributed
programming paradigms

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 59

Prerequisites

Very good programming knowledge
Usage of code repositories
Basics on network, multi-threading, and synchronization
Theoretical background (logic, formal languages)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 59

What is a distributed system?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 59

Definition: Distributed system

A distributed system is a model in which components located on
networked computers communicate and coordinate their actions by
passing messages.

– Coulouris et al. Distributed Systems: Concepts and Design
(Addison-Wesley, 2011).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 59

Infamous definition by famous distributed systems
researcher

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.
– L. Lamport (ACM Turing Award 2013)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 59

Definition: Service/Server/Client

A service is a distinct part of a computer system that mangages a
collection of related resources and presents their functionality to users
and applications.

A server is a running program (i.e. a process) on a networked
computer that accepts requests from programms running on other
computers to perform a service and respond appropriately.

The requesting processes are clients.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 59

Why do we want to distribute things?

Source: http://www.deniseyu.io/srecon-slides

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 59

More resources: If, instead of using a single machine to run my
system, I use N machines (N >> 1), then I will have N times more
resources (storage / processing power) and hopefully my system will be
(close to) N times faster / answer N times as many requests in the
same time unit.

Fault-tolerance (aka dependability): If I use N machines to support
my system and f of them (f < N) fail, then my system can still
operate.

Low latency: A request will be served faster by a machine that is
closer to me.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 59

Source: http://www.deniseyu.io/srecon-slides

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 59

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 59

Challenges in Distributed Computing
Security

Confidentiality
Integrity
Availability

Scalability

Handling increase in number of users
Handling increase in number of resources
Elasticity

Failure handling

Detecting failures
Masking failures
Tolerating failures
Recovery

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 59

Distributed System Models

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 59

Let’s go back to the definition

A distributed system is composed by a set of processes that are
interconnected through some network where processes seek to achieve
some form of cooperation to execute tasks by sending messages.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 59

Formal model: Process
Processes are an abstract notion of machine/node.

Unless stated otherwise, we assume that all processes of the system
run the same local algorithm.
Processes communicate through the exchange of messages.
Each process is in essence a (deterministic) automaton.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 59

Formal model: Network
A network is modeled as graph G = (Π, E) where Π = p1, . . . , pn

is the set of processes and E represents the communication
channels (i.e, links) between pairs of processes.

Assumption: Every process is connected to every other by a
bidirectional link.
In practice: Different topologies can be used, requiring routing
algorithms
Often, algorithms can be specialized of specific topologies

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 59

Assumptions

A process step consists of receiving a message, executing a local
computation, and sending messages to processes.
Interactions between local components of the same process are
viewed as local computation (and not as communication!)
We can relate a reply message to a response.

In practice, this is often achieved by using timestamps based on
local clocks.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 59

Time in Distributed Systems

Two fundamental models:

Synchronous System:
We assume that there is a known upper bound to the time required to
deliver a message through the network and for a process to make all
computations related with the processing of the message.

Asynchronous System:
There are no assumptions about the time required to deliver a message
or process a message.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 59

This might look as not a big deal, but actually the timing assumptions
have strong implications:

In a synchronous system, you can detect when a process fails (in
some particular fault models).
In a synchronous system, you can have protocols evolve in
synchronous steps. (Why is that?)
In an asynchronous system, there are some problems that actually
cannot be solved.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 59

Synchronous Systems

Known upper bound on computations / message processing.
Known upper bound on message transmission delays.
Known upper bound on rate at which local physical clocks deviate
from global real-time clock1

Example:

Google’s TrueTime API uses atomic clocks, GPS positioning and
clever tricks to provide globally synchronized clocks with deviation
of less than 6ms.

1To simplify the reasoning about the processes, we assume that a global
real-time clock exists, but it is not accessible to the processes.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 35/ 59

Synchronous Model: Execution in rounds

In each round, a process will:

Receive messages from all processes.
Process messages to adapt local state and determine which messages are generated.
Send messages to all processes.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 36/ 59

Asynchronous Model: Execution is not based on rounds

Since there is no notion of rounds:

An (re-)action of a process is triggered by the reception of a single message.
This can trigger the generation (and transmission) of a new set of messages.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 37/ 59

Annette Bieniusa Programming Distributed Systems Summer Term 2019 38/ 59

Processes and events

A system is composed of a collection of processes.
Each process consists of a sequence of events.

What is an event?

Depends on concrete model: Can be a single machine instructions
or even executing of one procedure
Sending and receiving of messages are events.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 59

Happens-before Relation
In asynchronous systems, it is only possible to determine a relative
order of events[4].

The happens-before relation → on the set of events of a system is the
smallest relation satisfying the following three conditions:

1 If a and b are events in the same process, and a comes before b,
then a → b.

2 If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a → b.

3 If a → b and b → c, then a → c.

Two distinct events a and b are said to be concurrent if a 6→ b and
b 6→ a.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 40/ 59

Logical clocks
Each process p keeps a logical clock lp, initially 0.
When an event that occurs at p is not a receipt of a message, lp
is incremented by 1.
The value of lp during the execution (after incrementing lp) of
event e is denoted by t(e) (the timestamp of event e).
When a process sends a message, it adds a timestamp to the
message with value of lp at time of sending.
When a process p receives a message m with timestamp lm, p
increments its timestamp to

lp := max(lp, lm) + 1

We can show:
a → b ⇒ t(a) < t(b)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 41/ 59

Beyond Synchrony and Asynchrony

The “real world” is actually asynchronous, so why is it that we
sometimes consider the synchronous model?

Practical systems are actually partially synchronous (or eventually
synchronous).
This means that the system is considered to be asynchronous, but
it is assumed that eventually (meaning for sure at some time in
the future that is unknown) the system will behave in a
synchronous way (for long enough).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 42/ 59

Beyond Synchrony and Asynchrony

The “real world” is actually asynchronous, so why is it that we
sometimes consider the synchronous model?

Practical systems are actually partially synchronous (or eventually
synchronous).
This means that the system is considered to be asynchronous, but
it is assumed that eventually (meaning for sure at some time in
the future that is unknown) the system will behave in a
synchronous way (for long enough).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 42/ 59

Fault models
We distinguish between:

Fault: An accidental condition that causes a system component
to fail to perform its required function.
Error: An error is a misunderstanding or mistake on the part of a
software developer. A fault is introduced into the software as the
result of an error.
Failure: Inability of a system component to perform its required
function according to its specification.

Example:

Sector in the hard disk is damaged (fault)

⇒ Sector is accessed (error)

⇒ File is lost (failure)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 43/ 59

Remarks

The failure of a component of a process might imply a fault in
another (higher-level) component.
Going back to the previous example, the failure of the file system
(file damaged) might lead to a fault in the load of the operative
system, which might result in the failure of the operative system.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 44/ 59

Process Fault Model
A process that never fails is correct.
A correct process never deviates from its expected/prescribed
behaviour.
It executes the algorithm as expected and sends all messages
prescribed by it.

Remarks:

Failed processes might deviate from their prescribed behaviour in
different ways.
The unit of failure is the process, i.e., when it fails, all its
components fail at the same time.
The (possible) behaviours of a process that fails is defined by the
process fault model.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 45/ 59

Classical Fault Models
Crash-Fault Model

When a process fails, it stops sending any messages (from that
point onward).
This is the fault model that we will consider most of the times.

Omission-Fault Model
A process that fails omits the transmission (or reception) of any
number of messages (e.g. due to buffer overflows).

Fail-Stop Model
Similar to the crash model, except that upon failure the process
“notifies” all other processes of its own failure.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 46/ 59

Byzantine (or Arbitrary) Fault Model

A failed process might deviate from its protocol in any arbitrary
way.

Examples:

Duplicate Messages
Create invalid messages
Modify values received from other processes

Why is this relevant?

Can capture memory corruption
Can capture software bugs
Can capture a malicious attacker that controls a process

Annette Bieniusa Programming Distributed Systems Summer Term 2019 47/ 59

Byzantine (or Arbitrary) Fault Model

A failed process might deviate from its protocol in any arbitrary
way.

Examples:

Duplicate Messages
Create invalid messages
Modify values received from other processes

Why is this relevant?

Can capture memory corruption
Can capture software bugs
Can capture a malicious attacker that controls a process

Annette Bieniusa Programming Distributed Systems Summer Term 2019 47/ 59

Network Model

The Network Model captures the assumptions made concerning the
links that interconnect processes.

Namely, it captures what can go wrong in the network regarding:

Loss of messages sent between processes
Possibility of duplication of messages
Possibility for corruption of messages

Annette Bieniusa Programming Distributed Systems Summer Term 2019 48/ 59

Fair-Loss Model

A model that captures the possibility of messages being lost albeit
in a fair way.
Properties:

FL1 (Fair-Loss): Considering two correct processes i and j; if i
sends a message m to j infinitely often, then j delivers m infinitely
often.
FL2 (Finite Duplication): Considering two correct processes i and
j; if i sends a message m to j a finite number of times, then j
cannot deliver m infinite times.
FL3 (No Creation): If a correct process j delivers a message m,
then m was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 49/ 59

Perfect-Link Model (also called Reliable)

A stronger model that assumes the links between processes are
well behaved.
Properties:

PL1 (Reliable Delivery): Considering two correct processes i and j;
if i sends a message m to j, then j eventually delivers m.
PL2 (No Duplication): No message is delivered by a process more
than once.
PL3 (No Creation): If a correct process j delivers a message m,
then m was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 50/ 59

What about reality?
Our networks are actually closer to the fair-loss model, however its
frequent that we use the perfect link model. . .

Why?

The perfect link model makes it easier to reason about algorithms
design. . .
. . . but more importantly, these abstractions can be built on top
of one another through the use of distributed algorithms.
In practise:

The Fair-loss Point-to-Point Link abstraction can be implemented
on UDP sockets.
Using TCP sockets, we can implement an abstraction of the
Perfect-Link Model.

TCP includes acknowledgements and retransmissions
Problem in asynchronous systems: Connection is broken if the
receiver is unresponsive

Annette Bieniusa Programming Distributed Systems Summer Term 2019 51/ 59

Algorithms Specification and Properties
Notice that when discussing these network models (i.e,
abstractions), we have defined them as a set of properties.
Algorithms (that materialize these abstractions) also provide a set
of properties (if correct, those of the abstraction they provide).
Why do we tend to think in terms of properties?
Quick answer: Because algorithms are composable, and the design
of an algorithm depends on the underlying properties provided by
other algorithms.

What does these properties capture?

The correctness criteria for the algorithm (and its
implementation(s))
It defines restrictions on the valid executions of the algorithm.

Two fundamental types of properties: Safety & Liveness

Annette Bieniusa Programming Distributed Systems Summer Term 2019 52/ 59

Safety Properties

Conditions that must be enforced at any point of the execution
Intuitively, bad things that should never happen.
Relevant aspects:

The trace of an empty execution is always safe (do nothing and
you shall do nothing wrong).
The prefix of a trace that does not violate safety, will never violate
safety.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 53/ 59

Liveness Properties

Conditions that should be enforced at some point of an execution
Intuitively, good things that should happen eventually.
Relevant aspects:

One can always extend the trace of an execution in a way that will
respect liveness conditions (if you haven’t done anything good yet,
you might do it next).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 54/ 59

Safety vs Liveness Properties

Systems are not about lying nor about keeping silent, but about telling
the truth!

Correct algorithms will have both Safety and Liveness properties.
Some properties however are hard to classify within one of these
classes, and they might mix aspects of safety and liveness.
Usually, one can decompose these properties in simpler ones
through conjunctions.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 55/ 59

Conclusion: Distributed System Models

A distributed systems model is a combination of

1 a process abstraction,
2 a link abstraction, and
3 a timing abstraction.

Our default model: Fail-stop model
Crash-stop process abstraction (no recovery)
Perfect Point-to-Point links
Asynchronous, but assuming that we can detect crashed processes

Annette Bieniusa Programming Distributed Systems Summer Term 2019 56/ 59

Next lecture: The Broadcast Problem

Informally: A process needs to transmit the same message m to N
other processes.

Assumptions:

Complete set of processes in the system is known a-priori
Perfect Link Abstraction
Asynchronous system (no rounds, no failure detection)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 57/ 59

Further reading I
[1] Christian Cachin, Rachid Guerraoui und Luis Rodrigues.

Introduction to Reliable and Secure Distributed Programming (2.
ed.) Springer, 2011. isbn: 978-3-642-15259-7. doi:
10.1007/978-3-642-15260-3. url:
https://doi.org/10.1007/978-3-642-15260-3.

[2] Bernadette Charron-Bost, Fernando Pedone und André Schiper,
Hrsg. Replication: Theory and Practice. Bd. 5959. Lecture Notes
in Computer Science. Springer, 2010. isbn: 978-3-642-11293-5.
doi: 10.1007/978-3-642-11294-2. url:
https://doi.org/10.1007/978-3-642-11294-2.

[3] George Coulouris u. a. Distributed Systems: Concepts and Design.
5th. USA: Addison-Wesley Publishing Company, 2011. isbn:
0132143011, 9780132143011.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 58/ 59

https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1007/978-3-642-11294-2

Further reading II

[4] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Commun. ACM 21.7 (1978), S. 558–565.
doi: 10.1145/359545.359563. url:
https://doi.org/10.1145/359545.359563.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 59/ 59

https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

	What can possibly go wrong …
	Organization of this course
	What is a distributed system?
	Distributed System Models

