
Modelling and validating
distributed systems with

TLA+

Carla Ferreira
29th April 2019

TLA+ specification language
• Formal language for describing and reasoning about distributed and

concurrent systems.

• TLA+ is a model-oriented language:
• based on mathematical logic and set theory plus temporal logic TLA

(temporal logic of actions).

• Supported by the TLA Toolbox.

• References:
• TLA+ Hyperbook (http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html)
• TLA+ web page (http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html)

�2

http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

�3

Turing Award 2013
For fundamental contributions to the theory and practice of distributed and
concurrent systems, notably the invention of concepts such as causality
and logical clocks, safety and liveness, replicated state machines, and
sequential consistency.

Use of TLA+ at Amazon

“We have used TLA+ on 10 large complex real-world
systems. In every case TLA+ has added significant
value, either finding subtle bugs that we are sure we
would not have found by other means, or giving us
enough understanding and confidence to make
aggressive performance optimizations without
sacrificing correctness.“

 4

Use of TLA+ at Amazon

 5

First TLA+ Example

 6

1-bit Clock
• Clock’s possible behaviours:

�7

b = 1 ⟶ b = 0 ⟶ b = 1 ⟶ b = 0 ⟶ …

b = 0 ⟶ b = 1 ⟶ b = 0 ⟶ b = 1 ⟶ …

1-bit Clock

• Initial predicate:

�8

b = 1 ⋁ b = 0

• Next-step action (b’ is the variable at the next state):
⋁ (b = 0) ⋀ (b’ = 1)
⋁ (b = 1) ⋀ (b’ = 0)

• State variable:
b

The initial state and next-step action are formulas in TLA

1-bit Clock

• Initial predicate:

�9

b = 1 ⋁ b = 0

• Next-step action (b’ is the variable at the next state):

• State variable:
b

The initial state and next-step action are formulas in TLA

IF b = 0 THEN b' = 1
ELSE b' = 0

1-bit Clock: TLA specification

�10

---------------------------- MODULE OneBitClock ----------------------------
VARIABLE b

Init == (b=0) \/ (b=1)

TypeInv == b \in {0,1}

Next == \/ b = 0 /\ b' = 1
 \/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

THEOREM Spec => []TypeInv

===

What about the clock properties?

System’s properties
• Safety

• Something bad never happens
• E.g. system never deadlocks, the account balance is

greater or equal to zero

• Liveness
• Something good eventually happens
• E.g. if a process request access to a critical region it

will eventually be granted access, the light will
eventually turn green

�11
Let’s ignore liveness properties for now

---------------------------- MODULE OneBitClock ----------------------------
VARIABLE b

Init == (b=0) \/ (b=1)

TypeInv == b \in {0,1}

Next == \/ b = 0 /\ b' = 1
 \/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

THEOREM Spec => []TypeInv

===

1-bit Clock: TLA specification

�12

Typing information (TLA+ is untyped)

---------------------------- MODULE OneBitClock ----------------------------
VARIABLE b

Init == (b=0) \/ (b=1)

TypeInv == b \in {0,1}

Next == \/ b = 0 /\ b' = 1
 \/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

THEOREM Spec => []TypeInv

===

1-bit Clock: TLA specification

�13

The initial state satisfies Init
Every transition satisfies Next or leaves
b unchanged

[A]_<<f>> == A \/ (f’ = f)

---------------------------- MODULE OneBitClock ----------------------------
VARIABLE b

Init == (b=0) \/ (b=1)

TypeInv == b \in {0,1}

Next == \/ b = 0 /\ b' = 1
 \/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

THEOREM Spec => []TypeInv

===

1-bit Clock: TLA specification

�14

Theorem specifies an invariant property

TLC model checker
• Exhaustive breath-first search of all reachable

states

• Finds (one of) the shortest path to the property
violation

 15

Computing all possible behaviours

• State graph is a directed graph G

1. Put into G to the set of all initial states

2. For every state s in G compute all possible states t such
that s ⟶ t can be a step in a behaviour

3. For every state t found in step 2 not in G, draw an edge from
s to t

4. Repeat the previous steps until no new states or edges can
be added to G

�16

TLC: state space progress
• Diameter

• Number of states in the longest path of G with no repeated
states

• States found
• Total number of states it examined in step 1 and 2

• Distinct states
• Number of states that form the set of nodes of G

• Queue size
• Number of states s in G for which step 2 has not yet been done

�17

1-bit Clock: Model checking
• Checking the 1-bit clock with TLC model checker (demo)

�18

Exercise 1
• Define a TLA+ specification of an hour clock

• Check with TLC the typing invariant

�19

TLA+ Overview

 20

TLA+ Module
--------------------------------- MODULE M ---------------------------------
EXTENDS M1,..., Mn
* Incorporates the declarations, definitions, assumptions, and theorems from
* the modules named M1,...,Mn into the current module.

CONSTANTS C1,..., Cn * Declares the C1,..., Cn to be constant parameters.

ASSUME P * Asserts P as an assumption.

VARIABLES x1,..., xn * Declares x1,..., xn as variables.

TypeInv == exp * Declares the types of variables x1,..., xn.

Init == exp * Initializes variables x1,..., xn.

F(x1,..., xn) == exp
* Defines F to be an operator such that
* F(e1,...,en) equals exp with each identifier xk replaced by ek.

f[x \in S] == exp
* Defines f to be the function with domain S such that f[x] = exp
* for all x in S.
* The symbol f may occur in exp, allowing a recursive definition.

THEOREM P
*Asserts that P can be proved from the definitions and assumptions of the
*current module.
===

 21

TLA+ syntax and semantics

• Logic

• Sets

• Functions

• Tuples, sequences and records

• EXCEPT, UNION, and CHOOSE operators

 22

Logic

~(TRUE /\ b)

a => b

Next == b’ = 0

b \in BOOLEAN

x \notin S

\A x \in {1, 2, 3, 4, 5} : x >= 0

\E x \in {1, 2, 3, 4, 5} : x % 2 = 0

 23

Sets

S = {1, 2, 3}

S # {1, 2, 3} S /= {1, 2, 3}

x \in S

x \notin S

S \union {1, 2, 3}

{ n \in {1, 2, 3, 4, 5} : n % 2 != 0 } = {1, 3, 5}

{ 2*n+1 : n \in {1, 2, 3, 4, 5} } = {3, 5, 7, 9, 11}

UNION { {1, 2}, {2, 3}, {3, 4} } = {1, 2, 3, 4}

SUBSET {1, 2} = {{}, {1}, {2}, {1, 2}}
 24

CHOOSE

CHOOSE x \in S : P(x)
* Equals some value v in S such that P(v) equals true, if such a value exists.
* Its value is unspecified if no such v exists

CHOOSE x \in {1, 2, 3, 4, 5} : TRUE

CHOOSE x \in {1, 2, 3, 4, 5} : x % 2 = 0

 25

CHOOSE is deterministic!

CHOICE vs. non-determinism

removeOneDet ==
IF procs \= {}
THEN procs' =

procs \ {CHOOSE t \in procs : TRUE}
ELSE UNCHANGED procs

 26

Deterministic Non-deterministic

removeOneNonDet ==
IF procs \= {}
THEN \E x \in procs : procs' = procs \ {x}
ELSE UNCHANGED waiting

a single sucessor state many of successor states

Functions

 27

[i \in {2,3,5,9} |-> i - 7] = (2 :> -5 @@ 3 :> -4 @@ 5 :> -2 @@ 9 :> 2)

DOMAIN [i \in {2,3,5,9} |-> i - 7] = {2, 3, 5, 9}

[[i \in {2,3,5,9} |-> i - 7][3] = -4

[{2,4} -> { "a", "b" }] = { (2 :> "a" @@ 4 :> “a"), (2 :> "a" @@ 4 :> "b"),
 (2 :> "b" @@ 4 :> “a”), (2 :> "b" @@ 4 :> "b") }

[[i \in {2,3,5,9} |-> i - 7] EXCEPT ![2]= 12] =
 (2 :> 12 @@ 3 :> -4 @@ 5 :> -2 @@ 9 :> 2)

Records

 28

[node |-> "n1", edge |-> "e1"]

[node |-> "n1", edge |-> "e1"].edge = "e1"

[nodes : {"n1","n2"}, edges : {"e1","e2"}]

[node |-> "n1", edge |-> "e1"] EXCEPT !.edge = "xpto"] =
 [node |-> "n1", edge |-> "xpto"]

Tuples

 29

<<"ana", 32, 37495>>

<<"ana",32>>[2] = 32

<<"ana",32>>[1] = "ana"

{1,2,3} \times {"a","b"} = { <<1, "a">>, <<1, "b">>, <<1, "c">>,

 <<2, "a">>, <<2, "b">>, <<2, "c">>,

 <<3, "a">>, <<3, "b">>, <<3, "c">> }

Sequences

 30

------------------------------ MODULE Sequences -----------------------------
LOCAL INSTANCE Naturals

Seq(S) == UNION {[1..n -> S] : n \in Nat}

Len(s) == CHOOSE n \in Nat : DOMAIN s = 1..n

s \o t == [i \in 1..(Len(s) + Len(t)) |-> IF i \leq Len(s) THEN s[i]
 ELSE t[i-Len(s)]]
Append(s, e) == s \o <<e>>

Head(s) == s[1]

Tail(s) == [i \in 1..(Len(s)-1) |-> s[i+1]]

SubSeq(s, m, n) == [i \in 1..(1+n-m) |-> s[i+m-1]]

===

Other constructs

 31

Crossing the river

 32

• A farmer is on one shore of a river and has with him a fox, a
chicken, and a sack of grain.

• He has a boat that fits one item besides himself.
• In the presence of the farmer nothing gets eaten, but if left

without the farmer, the fox will eat the chicken, and the
chicken will eat the grain.

• How can the farmer get all three items across the river safely?

Exercise: Crossing the river

• Define a TLA+ specification for this problem.

• Check with TLC the typing invariant.

• Add an invariant stating that is not possible to get
all three items across the river.

• Use TLC to find a solution to this problem.

 33

Only allow safe operations

Exercise: Crossing the river

 34

• Some help:
------------------------------------ MODULE CrossingRiver ——————————————————
EXTENDS Integers

CONSTANTS Farmer, Fox, Chicken, Grain

Items == {Fox, Chicken, Grain}

safe(S) == ~({Fox, Chicken} \subseteq S \/ {Chicken, Grain} \subseteq S)

VARIABLES onLeftShore, onRightShore

TypeInv ==
 /\ onLeftShore \in SUBSET (Items \union {Farmer})
 /\ onRightShore \in SUBSET (Items \union {Farmer})

Crossing the river: Solution

 35

crossWithItem
{Farmer,Chicken}

crossAlone
{Farmer}

crossWithItem
{Farmer,Grain}

crossWithItem
{Farmer,Chicken}

crossWithItem
{Farmer,Fox}

crossAlone
{Farmer}

crossWithItem
{Farmer,Chicken}

