Modelling and validating
distributed systems with
TLA+

Carla Ferreira
29th April 2019

TLA+ specitication language

 Formal language for describing and reasoning about distributed and
concurrent systems.

* TLA+ is a model-oriented language:

* pbased on mathematical logic and set theory plus temporal logic TLA
(temporal logic of actions).

e Supported by the TLA Toolbox.

e References:

e TLA+ Hyperbook (http://research.microsoft.Com/en—us/um/peop|e/Iamport/tIa/hyperbook.html)

° _A+Webpage(h JIr rch.microsoft.com/en-us/um le/lamport/il I.hml)

http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

LESLIE LAMPORT'S HOME PAGE

NEW: TLA+ Use at Amazon

The TLLA Web Page

My Collected Works

Specifying
Systems
lagisead Sl v

Turing Award 2013
For fundamental contributions to the theory and practice of distributed and
concurrent systems, notably the invention of concepts such as causality
and logical clocks, safety and liveness, replicated state machines, and
sequential consistency.

Use of TLA+ at Amazon

“We have used TLA+ on 10 large complex real-world
systems. In every case TLA+ has added significant
value, either finding subtle bugs that we are sure we
would not have found by other means, or giving us
enough understanding and confidence to make
aggressive performance optimizations without
sacrificing correctness.”

Use of TLA+ at Amazon

Applying TLA+ to some of our more complex systems

System Components Line count Benefit
(excl. comments)

S3 Fault-tolerant low-level 804 Found 2 bugs. Found further bugs
network algorithm PlusCal in proposed optimizations.
Background redistribution of 645 Found 1 bug, and found a bug in
data PlusCal the first proposed fix.

DynamoDB Replication & group- 939 Found 3 bugs, some requiring
membership system TLA+ traces of 35 steps

EBS Volume management 102 PlusCal Found 3 bugs.

Internal Lock-free data structure 223 Improved confidence. Failed to

distributed PlusCal find a liveness bug as we did not

lock manager check liveness.
Fault tolerant replication and 318 Found 1 bug. Verified an
reconfiguration algorithm TLA+ aggressive optimization.

First TLA+ Example

1-bit Clock

* Clock’s possible behaviours:

b=1 — b=0 — b=1 — b=0 — ...

b=0 — b=1 — b=0 — b=1 — ...

1-bit C\OCK -

e State variable:
b

* |nitial predicate:
b=1Vv b=0

* Next-step action (b’ is the variable at the next state):

Vv(b=0)A(D =1)
Vvib=1) A =0)

The initial state and next-step action are formulas in TLA

_toitblock

e State variable:
b

* |nitial predicate:
b=1Vv b=0

* Next-step action (b’ is the variable at the next state):

Fb=0THENDb =1
-LSEb' =0

The initial state and next-step action are formulas in TLA

1-bit Clock: TLA specitication

VARIABLE b

Init == (b=0) \/ (b=1)

What about the clock properties?

10

System'’s properties

o Safety
 Something bad never happens
 E.g. system never deadlocks, the account balance is
greater or equal to zero
e Liveness
 Something good eventually happens

 £.0.If aprocess request access to a critical region it
will eventually be granted access, the light will
eventually turn green

Let’s ignore liveness properties for now

11

1-bit Clock: TLA specitication

1-bit Clock: TLA specitication

VARIABLE b
Init == (b=0) \/ (b=1)

Typelnv == b \in {0,1}

Next == \/ b =0 /\Db' =1
\/b=1/\b"=20

/\ [][Next]_<>{;

13

1-bit Clock: TLA specitication

VARIABLE b
Init == (b=0) \/ (b=1)

TypeInv == b \1in {0,1}

Next == \/ b =0 /\b" =1
\/b=1/\b"=20

Spec == Init /\ []J[Next]_<>

 THEOREM —> []TypeInv

14

TLC model checker

e Exhaustive breath-first search of all reachable
states

* Finds (one of) the shortest path to the property
violation

15

Computing all possible behaviours

o State graph is a directed graph G
1. Put into G to the set of all initial states

2. For every state s in G compute all possible states t such
that s — t can be a step in a behaviour

3. For every state t found in step 2 not in G, draw an edge from
stot

4. Repeat the previous steps until no new states or edges can
be added to G

16

TLC: state space progress

e Diameter

* Number of states in the longest path of G with no repeated
states

e States found
o Total number of states it examined in step 1 and 2

e Distinct states
 Number of states that form the set of nodes of G
* Queue size

 Number of states s in G for which step 2 has not yet been done

17

1-bit Clock: Model checking

S d - \ G-l g < By o J B2 g < \g S g < e il g < Y - J = J ¥

* Checking the 1-bit clock with TLC model checker (demo)

t== Model Checking Results

o
General
Start time: Sun Sep 18 15:47:11 BST 2016
End time: Sun Sep 18 15:47:11 BST 2016

Last checkpoint time:

Current status: Not running

Errors detected: No errors

Fingerprint collision probability: calculated: 2.2E-19, observed: 3.7E
= Statistics

State space progress (click column header for graph)

Time Diameter States Found Distinct States Queue Size
2016-09-18 15:47... 1 4 2 0

18

Exercise 1

 Define a TLA+ specification of an hour clock

 Check with TLC the typing invariant

19

TLA+ Overview

TLA+ Moaule

————————————————————————————————— MODULE M === e e e e e
EXTENDS M1,..., Mn

* Incorporates the declarations, definitions, assumptions, and theorems from
* the modules named M1,...,Mn into the current module.

CONSTANTS (C1,..., Cn * Declares the C1l,..., Cn to be constant parameters.

ASSUME P * Asserts P as an assumption.

VARIABLES x1,..., xn * Declares x1,..., xn as variables.

Typelnv == exp * Declares the types of variables x1,..., xn.

Init == exp * Initializes variables x1,..., xn.

F(x1,..., xn) == exp

* Defines F to be an operator such that

* F(Cel,...,en) equals exp with each identifier xk replaced by ek.
THEOREM P

*Asserts that P can be proved from the definitions and assumptions of the
*current module.

Logic

Sets

Functions

Tuples, sequences and records

EXCEPT, UNION, and CHOOSE operators

TLA+ syntax and semantics

22

ANV - = =
TRUE FALSE BOOLEAN [the set {TRUE, FALSE}]
Veel : :p dxeS:p

~(TRUE /\ b)

a=>>b

Next == b’ = 0

b \in BOOLEAN

X \nhotin S

\A x \in {1, 2, 3, 4, 5} : x >=0

\E x \in {1, 2, 3, 4, 5} : x % 2 =0

Wele][e

23

Sets

= # € & U N C '\ [set difference]

{61, e s€n} [Set consisting of elements e;]
{zeS :p} @ Set of elements z in S satisfying p]
{e : €S} ™ Set of elements e such that z in 5]

SUBSET S Set of subsets of S]
UNION S (Union of all elements of §]
S = {1, 2, 3}
S# {1, 2, 3} S /= {1, 2, 3}
X \1n S

X \notin S

S \union {1, 2, 3%

{n\in {1, 2, 3, 4, 5} : n% 2 =0 } = {1, 3, 5}

{ 2*n+1 : n \in {1, 2, 3, 4, 5} } = {3, 5, 7, 9, 11}
UNION { {1, 2}, {2, 3}, {3, 4} } = {1, 2, 3, 4}
SUBSET {1, 2} = {{}, {1}, {2}, {1, 2}

24

CHOOSE x \in S : P(x)

* Equals some value v in S such that P(v) equals true, if such a value exists.
* Tts value 1s unspecified if no such v exists

CHOOSE x \in {1, 2, 3, 4, 5} : TRUE
CHOOSE x \in {1, 2, 3, 4, 5} : x % 2 = 0

CHOOQOSE is deterministic!

25

CHOICE vs. non-determinism

removeOneDet == removeOneNonDet ==
IF procs \= {}

IF procs \= {}
THEN \E x \1n procs : procs' = procs \ {x}

THEN procs' =
procs \ {CHOOSE t \in procs : TRUE} ELSE UNCHANGED waiting

ELSE UNCHANGED procs

many of successor states

a single sucessor state

26

Functions

fle] Function application]

DOMAIN f Domain of function f]

z €S e Function f such that f[z] = e for z € §]

S — T Set of functions f with f [z] € T for z € S]

f EXCEPT ![e1] = eg] Function f equal to f except f[el] = e3. An @

in ez equals f[e1].]

[1 \in {2,3,5,9} |->1 -7] =2 >-5@@ 3 :>-4@@5 :>-2@@9 :>2)
DOMAIN [1 \in {2,3,5,9} |->1 - 7] = {2, 3, 5, 9}
[[1 \in {2,3,5,9} I->1 - 7][3] = -

[{2,4} > { "a", "b" }] ={ (2 :> "a" @@ 4 :> “a"), (2 :> "a" @@ 4 :> "b"),
(2 :> "b" @@ 4 :> “a”), (2 :> "b" @@ 4 :> "b") }

[[1 \in {2,3,5,9} |-> 1 - 7] EXCEPT !'[2]= 12] =
(2 >12 @@ 3 :> -4 @5 :> -2 @ 9 :> 2)

27

Records

e.h ‘The h-component of record e]

hy +— €1,...,hn — €| [The record whose h; component is e;]

h1 : S1,...,hn : Sp] [Set of all records with h; component in S;]

7 EXCEPT !.h =-¢] P [Record 7 equal to r except 7.h = e. An @ in e
equals 7.h.]

‘node |[-> "nl", edge [-> "el"]
‘node |-> "nl", edge [-> "el"].edge = "el"

‘nodes : {"nl1l","n2"}, edges : {"el","e2"}]

‘node |-> "nl", edge |[-> "el"] EXCEPT !.edge

[node |-> "nl1", edge |-> "xpto"]

llxptoll] —

28

Tuples

e|i] ‘The i*" component of tuple e]
(€1y...,€n) ‘The n-tuple whose i*" component is e;]
S1 X ...%x S, [The set of all n-tuples with i*" component in S;]

<<"ana", 32, 37495>>

<<"ana",32>>[2] = 32

<<"ana",32>>[1] = "ana"

{1,2,3} \times {"a","b"} = { <<1, "a">>, <<1, "b">>, <<1, "c">>,

<<2, "a">>, <<2, "b">>, <<2, "c">>,

<<3, "a">>, <<3, "b">>, <<3, "c">> }

29

SEeqUENCES

LOCAL INSTANCE Naturals
Seq(S) == UNION {[1..n -> S] : n \in Nat}
Len(s) == CHOOSE n \in Nat : DOMAIN s = 1..n
s \ot==1[1\1n 1..(Len(s) + Len(t)) I|I-> IF 1 \leq Len(s) THEN s[1i]
ELSE t[1-Len(s)]]
Append(s, e) == s \o <<e>>
Head(s) == s[1]

Tail(s) == [1 \in 1..(Len(s)-1) I|-> s[1+1]]

SubSeq(s, m, n) == [1 \in 1..(1+n-m) [-> s[i+m-1]]

30

Other constructs

IF p THEN e; ELSE €5 e if p true, else es]
CASE p; —m e 0 ... Op, — e, Some e; such that p; true]
CASE p; — e; 0 ... Op,, — e, OOTHER — € [Some e; such that p; true,

or e if all p; are false]

LET d; - €1 ... dp = e, IN e [e in the context of the definitions]
A pi1 [the conjunction p; A ... A p,] V p; [the disjunction p; V...V p,]
/\ p'n v p'n

31

Crossing the river

s :
1 DTN Y y
SO, SRNARS 4 7]
e <=3 s Z
SN -
'Vt:l’w\ 20 —
;';)L:l) "~1\ 3
W T
SN
\ 2
>andy /4
é{.u-?» ‘A /
Lo ‘:s?}\
S B :
- . e ——

A farmer is on one shore of a river and has with him a fox, a
chicken, and a sack of grain.

He has a boat that fits one item besides himself.

In the presence of the farmer nothing gets eaten, but it left
without the tarmer, the fox will eat the chicken, and the
chicken will eat the grain.

How can the farmer get all three items across the river safely?

32

Exercise: Crossing the river

* Define a TLA+ specification for this problem.
* Check with TLC the typing invariant.

* Add an invariant stating that is not possible to get
all three items across the river.

* Use TLC to find a solution to this problem.

Only allow safe operations

Exercise: Crossing the river

S ~ - g = B2 - < \g S g < A il g < Y - \g =

 Some help:

EXTENDS Integers

CONSTANTS Farmer, Fox, Chicken, Grain

Items == {Fox, Chicken, Grain}

safe(S) == ~({Fox, Chicken} \subseteq S \/ {Chicken, Grain} \subseteq S)
VARIABLES onLeftShore, onRightShore

Typelnv ==

/\ onLeftShore \in SUBSET (Items \union {Farmer})
/\ onRightShore \in SUBSET (Items \union {Farmer})

34

Crossing the river: Solution

Name Value
V & <Initial predicate> State (hum = 1)
» @ onLeftShore {Grain, Chicken, Farmer, Fox}

: E onRightShore {}
cr‘ossWIth.Item —p ¥V & <crossWithltem line 35, col 7 to line 38, col 64 of modul... State (num = 2)

{Farmer,Chicken} _
» @ onLeftShore {Grain, Fox}
» B onRightShore {Chicken, Farmer}
crossAlone ———3p ¥V & <crossAlone line 29, col 8 to line 32, col 52 of module Cr... State (num = 3)
{Farmer} » @ onLeftShore {Grain, Farmer, Fox}

- » @ onRightShore {Chicken}
CPOSSWIthIt,em —pp V¥ & <crossWithltem line 35, col 7 to line 38, col 64 of modul... State (num = 4)
{Farmer’Graln} » @ onLeftShore {Fox}

- » @ onRightShore {Grain, Chicken, Farmer}
cr'ossW1th.Item —p ¥V & <crossWithltem line 39, col 8 to line 42, col 62 of modul... State (hum = 5)

franer, rlaieny » @ onLeftShore {Chicken, Farmer, Fox}

- » B onRightShore {Grain}
crossWithItem —3p ¥V & <crossWithltem line 35, col 7 to line 38, col 64 of modul... State (num = 6)

{Far'mer',Fox} » B onLeftShore {Chicken}
» B onRightShore {Grain, Farmer, Fox}
crossAlone 3| ¥V & <crossAlone line 29, col 8 to line 32, col 52 of module Cr... State (num = 7)
{Farmer} » @ onLeftShore {Chicken, Farmer}
» @ onRightShore {Grain, Fox}
crossWithItem » Y & <crossWithitem line 35, col 7 to line 38, col 64 of modul... State (num = 8)
{Farmer,Chicken} B onLeftShore i

v

B onRightShore {Grain, Chicken, Farmer, Fox}

