
Programming Distributed Systems
09 Quorums

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 37

Consensus in Parliament

!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 37

Motivation

A quorum is the minimum number of members of an assembly
that is necessary to conduct the business of this assembly.
In the German Bundestag at least half of the members (355 out of
709) must be present so that it is empowered to make resolutions.

Idea
Can we apply this technique also for reaching consensus in distributed
replicated systems?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 37

Problem revisited: Register replication

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 37

Registers

A register stores a single value.
Here: Integer value, initially set to 0.

Processes have two operations to interact with the register: read
and write (aka: put/get).
Processes invoke operations sequentially (i.e. each process
executes one operation at a time).

Replication: Each process has its own local copy of the register,
but the register is shared among all of them.
Values written to the register are uniquely identified (e.g, the id of
the process performing the write and a timestamp or monotonic
value).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 37

Properties of a register

Liveness: Every operation of a correct process eventually completes.

Safety: Every read operation returns the last value written.

What does last mean?
Each operation has an start-time (invocation) and end-time (return).
Operation A precedes operation B if end(A) < start(B).

We also say: operation B is a subsequent operation of A

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 37

Properties of a register

Liveness: Every operation of a correct process eventually completes.

Safety: Every read operation returns the last value written.

What does last mean?

Each operation has an start-time (invocation) and end-time (return).
Operation A precedes operation B if end(A) < start(B).

We also say: operation B is a subsequent operation of A

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 37

Properties of a register

Liveness: Every operation of a correct process eventually completes.

Safety: Every read operation returns the last value written.

What does last mean?
Each operation has an start-time (invocation) and end-time (return).
Operation A precedes operation B if end(A) < start(B).

We also say: operation B is a subsequent operation of A

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 37

Different types of registers (1 writer, multiple readers)

(1,N) Safe register
A register is safe if every read that doesn’t overlap with a write returns
the value of the last preceding write. A read concurrent with writes
may return any value.

(1,N) Regular register
A register is regular if every read returns the value of one of the
concurrent writes, or the last preceding write.

(1,N) Atomic register
If a read of an atomic register returns a value v and a subsequent read
returns a value w, then the write of w does not precede the write of v.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 37

Different types of registers (multiple writers and readers)

(N,N) Atomic register
Every read operation returns the value that was written most recently
in a hypothetical execution, where every operation appears to have
been executed at some instant between its invocation and its
completion (linearization point).

Equivalent definition: An atomic register is linearizable with respect to
the sequential register specification.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 37

Example execution 1

Is this execution possible for a safe/regular/atomic register?

Valid for all!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 37

Example execution 1

Is this execution possible for a safe/regular/atomic register?

Valid for all!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 37

Example execution 2

Is this execution possible for a safe/regular/atomic register?

Valid for all!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 37

Example execution 2

Is this execution possible for a safe/regular/atomic register?

Valid for all!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 37

Example execution 3

Is this execution possible for a safe/regular/atomic register?

Not valid!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 37

Example execution 4

Is this execution possible for an (N,N) atomic register?

Write operations are concurrent, we have to define linearization points
to arbitrate their order.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 37

Example execution 5

Is this execution possible for an (N,N) atomic register?

Not a valid execution, there are no linearization points that explain the
return of those two reads.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 37

Your task!

Assume that one writer and one reader operate on a shared regular
register.
The writer assigns a unique sequence number to each write (i.e. given
two written values you can determine the most recent).
5 processes replicate this register; at most 2 replicas can fail (i.e. the
majority processes will not fail).

Questions
How many acknowledgements from the replicas does the writer need to
be sure that the write succeeded?
How many replies does a reader need to obtain the last written value?
Can you optimize the algorithms for fast reads? And for fast writes?
How does your scheme work for N replicas, where f replicas may fail
and N ≥ 2f + 1?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 37

Intuition

We wait for at least N/2 + 1 processes to reply to the writer; this
ensures that our writes will be successful even if f replicas fail.
But when I read, how can I be sure that I am reading the last
value?
If I read from just one replica, I might have missed the last
write(s).

A reader needs to read from at least N/2 + 1 processes; this
ensures that it will read at least from one process that knows the
last write.
If several different values are returned when reading, we just need
to figure out which one is the last write (⇒ sequence number!).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 37

Why is this correct?

Operations always terminate because you only wait for a number
of processes that will never fail (since there are at most f failures).
Any write and read operation (more generally: any pair of
operations) will intersect in one correct process.

This intersection is the basis for quorum-based replication algorithms.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 37

Read repair and anti-antropy

We need to ensure that eventually all updates are applied at every
replica even if nodes are temporarily unavailable (e.g. due to
network partitions).
When a read receives different replies, the reader can forward the
newest value to the replicas with stale values (read repair).

Works well with registers that are frequently read
A background process can check for differences in the values on
each replica and forward missing updates from one replica to
another (anti-antropy).

Needed for registers that are rarely read

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 37

Quorum system

Definition
Given a set of replicas P = {p1, p2, . . . , pN}, a quorum system
Q = {q1, q2, . . . , qM} is a set of subsets of P such that for all
1 ≤ i, j ≤M, i 6= j:

qi ∩ qj 6= ∅

A quorum system Q is called minimal if ∀qi, qj ∈ Q : qi 6⊂ qj

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 37

Definition: Read-Write Quorum systems
Definition
Given a set of replicas P = {p1, p2, . . . , pN}, a read-write quorum
system is a pair of sets R = {r1, r2, . . . , rM} and
W = {w1, w2, . . . , wK} of subsets of P such that for all corresponding
i, j:

ri ∩ wj 6= ∅

Also called asymmetric quorum system
Typically, reads and writes are always sent to all N replicas in
parallel and we choose quorums w, r ⊆ P with |w| = W and
|r| = R such that W + R > N
W and R determine how many nodes need to reply before we
consider the operation to be successful.

Why is this a quorum system?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 37

Quorum Types: Read-one/write-all

Replication strategy based on a read-write quorum system

Read operations can be executed in any (and a single) replica.
Write operations must be executed in all replicas.

Properties:

Very fast read operations
Heavy write operations
If a single replica fails, then write operations can no longer be
executed successfully.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 37

Quorum Types: Majority

Replication strategy based on a quorum system

Every operation (either read or write) must be executed across a
majority of replicas (e.g. bN

2 c+ 1).

Properties:

Best fault tolerance possible from a theoretical point of view
Can tolerate f faults with N = 2f + 1

Read and write operations have a similar cost

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 37

Quorum Types: Grid
Processes are organized (logically) in a grid to determine the quorums
Example:

Write Quorum: One full line + one element from each of the lines below
that one
Read Quorum: One element from each line

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 37

Properties:

Size of quorums grows sub-linearly with the total number of
replicas in the system: O(

√
N)

This means that load on each replica also increases sub-linearly
with the total number of operations.

It allows to balance the dimension of read and write quorums (for
instance to deal with different rates of each type of request) by
manipulating the size of the grid (i.e, making it a rectangle)
Complex

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 37

How can we compare the different schemes?[2]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 37

Load
The load of a quorum system is the minimal load on the busiest
element.
An access strategy Z defines the probability PZ(q) of accessing a quorum q ∈ Q
such that

∑
q∈Q

PZ(q) = 1.

The load of an access strategy Z on a node p is defined by

LZ(p) =
∑

q∈Q,p∈q

PZ(q)

The load on a quorum system Q induced by an access strategy Z is the maximal
load on any node:

LZ(Q) = max
p∈P

LZ(p)

The load of a quorum system Q is the minimal load on the busiest element:

L(Q) = min
Z

LZ(Q)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 37

Resilience and failure probability

If any f nodes from a quorum system Q can fail such that there is still
a quorum q ∈ Q without failed nodes, then Q is f-resilient.

The largest such f is the resilience R(Q).

Assume that every node is non-faulty with a fixed probability (here:
p > 1/2). The failure probability F (Q) of a quorum system Q is the
probability that at least one node of every quorum fails.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 37

Analysis

The majority quorum system has the highest resilience (bN−1
2 c);

but it has a bad load (1/2). Its asymptotic failure probability
(N →∞) is 0.

One can show that for any quorum system S, the load
L(S) ≥ 1/

√
N .

Can we achieve this optimal load while keeping high resilience and
asymptoatic failure probability of 0?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 37

Quorum Types: B-Grid[2]
Consider N = dhr nodes.
Arrange the nodes in a rectangular grid of width d, and split the grid into h
bands of r rows each.
Each element is represented by a square in the grid.
To form a quorum take one “mini-column” in every band, and add a
representative element from every mini-column of one band ⇒ d + hr − 1
elements in every quorum.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 37

Case study: Dynamo

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 37

Amazon Dynamo[1]

Distributed key-value storage
Dynamo marks one of the first non-relational storage systems
(a.k.a. NoSQL) – Data items only accessible via some primary key

Interface: put(key, value) & get(key)

Used for many Amazon services (“applications”), e.g. shopping
cart, best seller lists, customer preferences, product catalog, etc.

Several million checkouts in a single day – Hundreds of thousands
of concurrent active sessions – Available as service in AWS
(DynamoDB)

Uses quorums to achieve partition- and fault-tolerance

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 37

Ring architecture

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 37

Consistent hashing of keys with “virtual nodes” for better load
balancing
Replication strategy:

Configurable number of replicas (N)
The first replica is stored regularly with consistent hashing
The other N − 1 replicas are stored in the N − 1 successor nodes
(called preference list)

Typical Dynamo configuration: N = 3, R = 2, W = 2 – But
e.g. for high performance reads (e.g., write-once, read-many):
R = 1, W = N

Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 37

Sloppy quorums

If Dynamo used a traditional quorum approach, it would be
unavailable during server failures and network partitions, and
would have reduced durability even under the simplest of
failure conditions. To remedy this, it does not enforce strict
quorum membership and instead it uses a “sloppy quorum”;
all read and write operations are performed on the first N
healthy nodes from the preference list, which may not always
be the first N nodes encountered while walking the consistent
hashing ring. [1]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 37

Why are sloppy quorums problematic?

Assume N = 3, R = 2, W = 2 in a cluster of 5 nodes (A, B, C, D,
and E)
Further, let nodes A, B, and C be the top three preferred nodes;
i.e. when no error occurs, writes will be made to nodes A, B, and
C.
If B and C were not available for a write, then a system using a
sloppy quorum would write to D and E instead.
In this case, a read immediately following this write could return
data from B and C, which would be inconsistent because only A,
D, and E would have the latest value.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 37

Dynamos’ solution: Hinted handoff

If the system needs to write to nodes D and E instead of B and C,
it informs D that its write was meant for B and informs E that its
write was meant for C.
Nodes D and E keep this information in a temporary store and
periodically poll B and C for availability.
Once B and C become available, D and E send over the writes.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 35/ 37

Summary

Quorums are essential building blocks for many applications in
distributed computing (e.g. replicated databases).
Essential property of quorum systems is the pairwise non-empty
intersection of quorums.
Majority quorums are intuitive and comparatively easy to
implement, but far from optimal.
Small quorums are not necessarily better

Compare loads and availability instead of size!
More on quorum theory: [3]

Next lecture: Consensus algorithms in Paxos-style

Annette Bieniusa Programming Distributed Systems Summer Term 2019 36/ 37

Further reading I
[1] Giuseppe DeCandia u. a. “Dynamo: Amazon’s Highly Available

Key-value Store”. In: Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles. SOSP ’07.
Stevenson, Washington, USA: ACM, 2007, S. 205–220. isbn:
978-1-59593-591-5. doi: 10.1145/1294261.1294281. url:
http://doi.acm.org/10.1145/1294261.1294281.

[2] Moni Naor und Avishai Wool. “The Load, Capacity, and
Availability of Quorum Systems”. In: SIAM J. Comput. 27.2
(1998), S. 423–447. doi: 10.1137/S0097539795281232. url:
https://doi.org/10.1137/S0097539795281232.

[3] Marko Vukolic. “The Origin of Quorum Systems”. In: Bulletin of
the EATCS 101 (2010), S. 125–147. url:
http://eatcs.org/beatcs/index.php/beatcs/article/view/183.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 37/ 37

https://doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://doi.org/10.1137/S0097539795281232
https://doi.org/10.1137/S0097539795281232
http://eatcs.org/beatcs/index.php/beatcs/article/view/183

	Problem revisited: Register replication
	How can we compare the different schemes?[@DBLP:journals/siamcomp/NaorW98]
	Case study: Dynamo

