
Programming Distributed Systems
10 Total-order broadcast with Raft

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 34



Classical Consensus Problem
Each process pi has an initial value vi (propose(vi)).
All processors have to agree on common value v that is the initial
value of some pi (decide(v)).

Properties of Consensus:

Uniform Agreement: Every correct process must decide on the
same value.
Integrity: Every correct process decides at most one value, and if
it decides some value, then it must have been proposed by some
process.
Termination: All processes eventually reach a decision.
Validity: If all correct processes propose the same value v, then all
correct processes decide v.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 34



Challenges

Fault-tolerance rules out “dictator” solution (i.e. one node makes
the decision).
Any consensus algorithm requires at least a majority of nodes to
not crash to ensure termination. ⇒ Quorum!
Typically, nodes decide on a sequence of values. ⇒ Total-order
broadcast!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 34



Motivation: Replicated state-machine via Replicated Log

All figures in these slides are taken from [4].

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 34



Replicated log ⇒ State-machine replication
Each server stores a log containing a sequence of state-machine
commands.
All servers execute the same commands in the same order.
Once one of the state machines finishes execution, the result is
returned to the client.

Consensus module ensures correct log replication
Receives commands from clients and adds them to the log
Communicates with consensus modules on other servers such that
every log eventually contains same commands in same order

Failure model: Fail-stop (i.e. nodes may recover and rejoin),
delayed/lost messages

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 34



Practical aspects

Safety: Never return in incorrect result despite network delays,
partitions, duplication, loss, reordering of messages
Availability: Majority of servers is sufficient

Typical setup: 5 servers where 2 servers can fail
Performance: (Minority of) slow servers should not impact the
overall system performance

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 34



Approaches to consensus

Leader-less (symmetric)
All servers are operating equally
Clients can contact any server

Leader-based (asymmetric)
One server (called leader) is in charge
Other server follow the leader’s decisions
Clients interact with the leader, i.e. all requests are forwarded to
the leader
If leader crashes, a new leader needs to be (s)elected
Quorum for choosing leader in next epoch (i.e. until the leader is
suspected to have crashed)
Then, overlapping quorum decides on proposed value ⇒ Only
accepted if no node has knowledge about higher epoch number

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 34



Classic approaches I

Paxos[2]
The original consensus algorithm for reaching agreement on a
single value
Leader-based
Two-phase process: Promise and Commit

Clients have to wait 2 RTTs
Majority agreement: The system works as long as a majority of
nodes are up
Monotonically increasing version numbers
Guarantees safety, but not liveness

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 34



Classic approaches II

Multi-Paxos
Extends Paxos for a stream of a agreement problems
(i.e. total-order broadcast)
The promise (Phase 1) is not specific to the request and can be
done before the request arrives and can be reused
Client only has to wait 1 RTT

View-stamped replication (revisited)[3]
Variant of SMR + Multi-Paxos
Round-robin leader election
Dynamic membership

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 34



The Problem with Paxos

[. . . ] I got tired of everyone saying how difficult it was to
understand the Paxos algorithm.[. . . ] The current version is
13 pages long, and contains no formula more complicated
than n1 > n2. [1]

Still significant gaps between the description of the Paxos algorithm
and the needs or a real-world system

Disk failure and corruption
Limited storage capacity
Effective handling of read-only requests
Dynamic membership and reconfiguration

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 34



In Search of an Understandable Consensus Algorithm:
Raft[4]

Yet another variant of SMR with Multi-Paxos
Became very popular because of its understandable description

In essence
Strong leadership with all other nodes being passive
Dynamic membership and log compaction

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 34



Server Roles

At any time, a server is either

Leader: Handles client interactions and log replication
Follower: Passively follows the orders of the leader
Candidate: Aspirant in leader election
During normal operation: 1 leader, N-1 followers

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 34



Terms = Epoch

Time is divided into terms
Each terms begins with an election
After a successful election, a single leader operates till the end of
the term
Transitions between terms are observed on servers at different
times

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 34



Leader election
Servers start as followers

Followers expect to receive messages from leaders or candidates
Leaders must send heartbeats to maintain authority

If electionTimeout elapses with no message, follower assumes that
leader has crashed
Follower starts new election

Increment current term (locally)
Change to candidate state
Vote for self
Send RequestVote message to all other servers

Possible outcomes
1 Receive votes from majority of servers ⇒ Become new leader
2 Receive message from valid leader ⇒ Step down and become

follower
3 No majority (electionTimeout elapses) ⇒ Increment term and start

new election

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 34



Properties of Leader Election

Safety: At most one leader per term

Each server gives only one vote per term, namely to the first
RequestVote message it receives (persist on disk)
At most one server can accumulate majorities in same term

Liveness: Some candidate must eventually win

Choose election timeouts randomly at every server
One server usually times out and wins election before others
consider elections
Works well if time out is (much) larger than broadcast time

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 34



Log replication

Log entry: index + term + command
Stored durably on disk to survive crashes
Entry is committed if it is known to be stored on majority of
servers

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 34



Operation (when no faults occur)

1 Client sends command to leader
2 Leader appends command to its own log
3 Leader sends AppendEntry to followers
4 Once new entry is committed, i.e. majority of servers acknowledge

storing

Leader executes command and returns result to client
Leader notifies followers about committed entries in subsequent
AppendEntries
Followers pass committed commands to their state machines

⇒ 1 RTT to any majority of servers

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 34



Log consistency

At beginning of new leader’s term:

Followers might miss entries
Followers may have additional, uncommitted entries
Both

Goal
Make follower’s log identical to leader’s log – without changing the leader log!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 34



Safety Requirement

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for this log entry.

If a leader has decided that a log entry is committed, this entry
will be present in the logs of all future leaders.

Restriction on commit
Restriction on leader election

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 34



Restriction on leader election

Candidates can’t tell which entries are committed
Choose candidate whose log is most likely to contain all
committed entries

Candidates include log info in RequestVote, i.e. index + term of
last log entry
Server denies a candidate its vote if the server’s log contains more
information; i.e. last term in server is larger than last term in
candidate, or, if they are equal, server’s log contains more entries
than candidate’s log

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 34



Example: Leader decides entry in current term is
committed

Leader for term 3 must contain entry 4!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 34



Example: Leader is trying fo finish committing entry from
an earlier term

Entry 3 not safely committed!

If elected, s5 will overwrite entry 3 on s1, s2, s3

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 34



Requirement for commitment
Entry must be stored on a majority of servers
At least one new entry from leader’s term must also be stored on
majority of servers.

Once entry 4 is committed, s5 cannot be elected leader for term 5

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 34



Question 1
Considering each of these logs in isolation, could such a log
configuration occur in a proper implementation of Raft?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 34



Question 2

Which log entries may safely be applied to state machines?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 34



Repairing Follower Logs
When appending new entry, send index+term of entry preceding
the new one
Follower must contain matching entry; otherwise, it rejects request
Leader keeps nextIndex for each follower

Index of next log entry to send to that follower
Initialized to 1 + leader’s last index
When AppendEntry consistency check fails, decrement nextIndex
and retry

When follower overwrites inconsistent entry, it deletes all
subsequent entries

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 34



When old leaders recover

E.g. temporarily disconnected from network
How does a leader realize that it has been replaced?

Every request contains term of sender
If sender’s term is older, request is rejected; sender reverts to
follower and updates its term
If receiver’s term is older, it reverts to follower, updates its term
und process then the message

Why does it work?
Election updates terms of majority of servers
Old leader cannot commit new log entries

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 34



Guarantees
Election Safety: At most one leader can be elected in a given term.

Leader Append-Only: A leader never overwrites or deletes entries in
its log; it only appends new entries.

Log Matching: If two logs contain an entry with the same index and
term, then the logs are identical in all entries up through the given
index.

Leader Completeness: If a log entry is committed in a given term,
then that entry will be present in the logs of the leaders for all
higher-numbered terms.

State-Machine Safety: If a server has applied a log entry at a given
index to its state machine, then no other server will every apply a
different log entry for the same index.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 34



Beyond the Basics

In the paper, there is more information regarding

Client interaction
Cluster membership changes
Log compaction
Performance evaluation

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 34



Question: Why does Raft not circumvent the FLP
theorem?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 34



Consensus Algorithms in Real-World Systems

Paxos made live - or: How Google uses Paxos
Chubby: Distributed coordination service built using Multi-Paxos
and MSR

Spanner: Paxos-based replication for hundreds of data centers;
uses hardware-assisted clock synchronization for timeouts
Apache Zookeeper: Distributed coordination service using Paxos

Typically used as naming service, configuration management,
synchronization, priority queue, etc.

etcd: Distributed KV store using Raft
Used by many companies / products (e.g. Kubernetes, Huawei)

RethinkDB: JSON Database for realtime apps
Storing of cluster metadata such as information about primary

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 34



Summary

Consensus algorithms are an important building block in many
applications
Replicated log via total-order broadcast
Raft as alternative to classical Paxos

Leader election
Log consistency
Commit

Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 34



Further reading I

[1] Leslie Lamport. “Paxos Made Simple”. In: SIGACT News 32.4
(Dez. 2001), S. 51–58. issn: 0163-5700. doi:
10.1145/568425.568433. url: http:
//research.microsoft.com/users/lamport/pubs/paxos-simple.pdf.

[2] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans.
Comput. Syst. 16.2 (1998), S. 133–169. doi:
10.1145/279227.279229. url:
http://doi.acm.org/10.1145/279227.279229.

[3] Barbara Liskov und James Cowling. Viewstamped Replication
Revisited (Technical Report). MIT-CSAIL-TR-2012-021. MIT, Juli
2012.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 34

https://doi.org/10.1145/568425.568433
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229


Further reading II

[4] Diego Ongaro und John K. Ousterhout. “In Search of an
Understandable Consensus Algorithm”. In: 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA,
June 19-20, 2014. Hrsg. von Garth Gibson und Nickolai Zeldovich.
USENIX Association, 2014, S. 305–319. url:
https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 34

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

	Question: Why does Raft not circumvent the FLP theorem?

