I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Randomized Testing of Distributed Systems

Burcu Kulahcioglu Ozkan

TU Kaiserslautern

Summer Term 2019

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

o

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Distributed systems are prone to bugs!

> Distribution A E% B

> Asynchrony 5 / \@

» Replicati O
» -E.?.p ication N &@\é&u/

@@\ 2
They are difficult to test!

> Many components, many sources of nondeterminism

Cassandra / CASSANDRA-14702 HBase / HBASE-20368

Cassandra Write failed 8ase Fix RIT stuck when a rsgroup has no online servers

ZooKeeper / ZOOKEEPER-2930
Leader cannot be elected due to network timeout

Burc ted Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Testing is a practical approach

o o e © o o o o o o
el *« o o s ssses o © ST ®
/'. \A‘ /v. /V\A‘
® @® .. . ¢ coo o ‘/'/ ®— ® ' * o o s 0 o @O /
Sa \ el Sa
\4 ~) , ®
‘ ‘ ® © © o o © o 0 0 0 o ‘ ‘ e 6 o o o o o o oo o o
Systematic testing - infeasible Random testing — no guarantees

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Randomized Testing with Probabilistic Guarantees

(joint work with Rupak Majumdar, Filip Niksic, Simin Oraee, Mitra Tabaei Befrouei, Georg Weissenbacher)

> We propose a randomized scheduling algorithm:

- for arbitrary partially ordered sets of events revealed online as the program
is being executed

- Guaranteeing a lower bound on the probability of exposing a bug

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

PCTCP on an example

Handler Logger Terminator Upgrowing Poset:
Request
e Request
Log
, /\
Terminate Log Terminate
Buggy if: >
Flush executes l
before Log! Flush Flush
}
Flushed
_ Flushed

Online chain partitioning:
The program is decomposed into

C1 = [Request]Log]
causally dependent chains of events: C2 = [Terminate]Flush]Flushed]

priority(C1) > priority (C2)

Programming Distributed Systems

Burcu Kulahcioglu Ozkan

Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

PCTCP on an example

Handler Logger Terminator Upgrowing Poset:
Request
e Request
Log
, /\
Terminate Log Terminate
Buggy if: >
Flush executes l
before Log! Flush Flush
}
Flushed
_ Flushed

Online chain partitioning:
The bug is detected with probability: C1 = [Request, Log]

PCTCP: 1/2 C2 = [Terminate, Flush, Flushed]
Random walk: 1/4 priority(C2) > priority (C1)

Burcu Kulahcioglu Ozkan

Programming Distributed Systems Summer Term 2019

OO0 o>

I—= TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Bug depth: Minimum tuple of events to expose the bug

»d =2 (e, e,) e.g. orderviolation
® - 0

»d =3 (eq, e, e3)e.g. atomicity violation
®@ -0 - 0

»d=n (eq, ..., e,) more complicated bugs

\ X
i =l VAN AN, \ /e
N\ TS NG W/

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 7

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Coverage: Strong d-Hitting families of schedules

A schedule a strongly hits (e, ..., eq—q) if foralle € P:

e =4 e;impliese = ej forsome j = i @ @ @
} N\ /

al = a,b,c,d, f,e, g @ @
strongly hits 1-tuple (g) , 2-tuple (e, g) \

o
a2 = a,b,c,d, f,g,e @
strongly hits 1-tuple {e) , 2-tuple (g, e), 3-tuple (d, g, e)

For each d-tuple, a strong d-hitting family has a schedule which strongly hits it.

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 8

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Challenge: How to sample uniformly at random
from strong d-hitting family for distributed systems?

> Events in a distributed message passing system:

upgrowing poset, revealed during execution

> Mutual dependency to the schedule

@ @ @ - Build a schedule online
1 \ / - For an arbitrary ordering
2/ ¢
© ®

Schedule: adeb fcyg

Use combinatorial results for posets!

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Realizer and dimension of a poset

Realizer of P is a set of linear orders:
FR - {L1;L2; th}

suchthat: LyNL, ... NL,=P

Dimension of P is the minimum size of a
realizer

Realizer of size dim(P)
- Covers all pairwise orderings!

Burcu Kulahcioglu Ozkan Programming Distributed Systems

@ © ©
| N/
@ ©

oG

Li=adebfcg
L,=cadebgf
L;y=cbgfade

dim(P) = 3

Summer Term 2019

10

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Adaptive chain covering ~ Online dimension algorithm

> Decompose P into chains C? @\ S:) > Compute linear extensions of P
@ /
@

7
Eal) CC:) 5 L1 = bhijfdde
| |)

L2 =addébff

@ @ @ L3 =adebfcg
|

This is a strong 1-hitting family!

Adaptive chaivdapitivinghaibtcongringitti Om favaithme@silbmeadgorétrhgion algorithm
[Felsner’97, Kloch’07]

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 11

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Strong d-hitting family ~ Adaptive chain covering

[Felsner, Kloch] Strong 1-hitting family ~ Adaptive chain covering
hit(w) = adapt(w)

[Our main result] Strong d-hitting family ~ Adaptive chain covering
n: number of events

hitd(W; 7’1) < CldClpt(W) (dﬁl) (d o 1)' d: bug depth

Index the schedules in the (L, Ny, e, Ng—q) strongly hits e, € Chain(1)
strong d-hitting family by: / \ | and e, ey, ...,e45_1
|

chain id steps in which eq, e,, ..., €41
Sample from this set of were added

schedules!

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 12

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

PCTCP : PCT + Chain Partitioning

Generates randomly a schedule index (4, n4,n,, ..., ng_1):

> Randomly generate a (d — 1)-tuple: (ny,ny, ..., ng_1)

> Partition P into chains online strongly hits e € Chain(4)

. . e ey ey and €1,€2 ..., €41
> Assign random distinct initial priorities > d

> Reduce priority at: (e, €5, ...,e4_1) to (d —i — 1) for ¢;

l o b o &
€3 [) €3 [) o

1 € [[[€2
S oo o
C|21 Gl g Ck B /1 Ck-l C2 Cl

Burcu Kulahcioglu Ozka wm 2019 13

>

>

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

The prob. of hitting a bug — Generalizes the PCT result

hitg(w,n) < adapt(w)(,",)(d — D! < adapt(w) n?~!
_'_l

online width of the poset of width w

Not possible to partition P of width w into w chains online in general:

C1 C1 C2 C1 C2 C1 Cc2 C3

° __ o 0_01_’..
. .

[Felsner, 95] The best possible on-line partitioning algorithm
partitions upgrowing P of width w into (ng) chains!

We sample from at most w?n%~1 schedules,

1 n: number of events
hitting a bug of depth d with a probability of at least Znd-1 d: bug depth

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 14

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Experimental results - Cassandra

Event \EVE: Avg of \EVE: #Buggy Time(s)
Labels (d) | Events (n) Max # Chains Chains

Random Walk 6.97 1000 0 481.95
PCTCP d=4 54 5.65 11 1000 0 505.73
PCTCP d=5 54 5.73 11 1000 1 503.81
PCTCP d=6 54 5.80 11 1000 1 512.00

o X \ \ .

N N NN SN NN/ N4

NS N D— > S —
D m n

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)
Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp

Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass

Source code at: https://gitlab.mpi-sws.org/rupak/hitmc

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Experimental results - ZooKeeper

Start(1) Start(2) Start(3)

Msg(1,1) Crash(1) Msg(2,1) Crash(2) Msg(3,1) Crash(3)
| !

Msg(1,2) Start(2)
| :

Msg(1,3) Msg(2,1) Crash(2)
4 .

Msg(1,1) Msg(2,2)

Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp
Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/rupak/hitmc

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

16

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Related Work

PCT for multithreaded programes, linear orders
[Burckhardt, Kothari, Musuvathi, Nagarakatte, 2010]

TYY
® ©© O
Lo
@Cflf)@
©

Our method hits a bug with a prob.

1
Generalizes the PCT result ——
kn

Burcu Kulahcioglu Ozkan

adapt(w)nd—1

Programming Distributed Systems

d-Hitting families of schedules, trees
[Chistikov, Majumdar, Niksic, 2016]

@/\
@ ®

Our method samples from hitting families
for any arbitrary upgrowing poset

Summer Term 2019 17

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Current Work: Partial Order Reduction for Hitting Families

Nodel Node2 Node3 Some schedules in strong hitting family are equivalent :

A

_ Upgrowing Poset:
> B A C D E

c !

_> B
D [
. e.g. Two schedules strongly hitting (E£') and (D):
’ ABCDE = ABCED

Can we use POR techniques for randomized testing?

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 18

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Depth-Bounded + Dependency-Aware Random Testing

Strong d-hitting
family

Depth-bounded set of schedules Partial order reduction

AN 7

Sample from a smaller set of schedules!

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 19

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Summary — PCTCP :

A randomized testing method PCTCP with probabilistic guarantees

for distributed message passing systems

> Depth-bounded sampling from strong d-hitting families of schedules
- Combinatorial results on dimension theory, adaptive chain covering

- Indexing strong d-hitting families of schedules of size hity(w,n) < adapt(w)n

> Our result generalizes the PCT guarantee:

- Hitting a bug with prob. of at least 1 / (adapt(w)n?™1)

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

d-1

20

I‘: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Randomized Testing with Jepsen

v

v

v

v

Test tool for safety of distributed databases, queueing systems, consensus
systems etc.

Black-box testing by randomly inserting network partition faults
Developed by Kyle Kingsbury, available open-source

Approach:
1. Generate random client operations
2. Record history
3. Verify that history is consistent with respect to the model

Annette Bieniusa Programming Distributed Systems Summer Term 2019

21

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Example: Jepsen Analysis for MongoDB

> MongoDB is a document-oriented database
> Primary node accepting writes and async replication to other nodes

Test scenario:

> 5 nodes, nlis primary
> Split into two partitions (n1, n2 and n3, n4, n5), n5 becomes new primary

> Heal the partition

Annette Bieniusa Programming Distributed Systems Summer Term 2019

22

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

How many writes get lost?

> In Version 2.4.1. (2013)

- Writes completed 93.608 seconds 6000 total 5700 acknowledged 3319
survivors 2381 acknowledged writes lost!

> Even when imposing writes to majority:

- 6000 total 5700 acknowledged 5701 survivors 2 acknowledged writes lost! 3
unacknowledged writes found!

> In Version 3.4.1 all tests are passed (when using the right configuration
with majority writes and linearizable reads) !!

Annette Bieniusa Programming Distributed Systems Summer Term 2019

23

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Coverage notions for network partitions:
> k-Splitting

- Split network into k distinct blocks (typically k = 2 or k = 3)
> (k,1)-Separation

- Split subsets of nodes with specific role

> Minority isolation

- Constraints on number of nodes in a block (e.g. leader is in the smaller block
of a partition)

With high probability, O(log n) random partitions simultaneously
provide full coverage of partitioning schemes that incur typical bugs.

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 24

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Tests and goal coverage:

A test covers
some goals

Tests T Goals G

Covering family = Set of tests cover all goals

Small covering families = Efficient testing

(from Filip Niksic’s presentation @ POPL'18)

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Random Testing

Pick a random test from T Fix a goal from G

(from Filip Niksic’s presentation @ POPL'18)

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Why Is Random Testing Effective for Partition Tolerance Bugs?

> Let G be the set of goals and P[random T covers G] 2 p

> Theorem: There exists a covering family of size p log|G]|.
- P[Trandom does not coverG]<1—p
- P[Kindependent T do not cover G] < (1 - p)¥
- P[Kindependent T are not a covering family] < |G| (1 - p)X

For K= p1log|G|, this probability is strictly less than 1.
Therefore, there must exist K tests that are a covering family!

(from Filip Niksic’s presentation @ POPL'18)

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019 27

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

ChaosMonkey

Unleash a wild monkey with a weapon in your data center (or cloud region) to
randomly shoot down instances and chew through cables?

> Built by Netflix in 2011 during their cloud migration
> Testing for fault-tolerance and quality of service in turbulent situations

> Random selection of instances in the production environment and deliberately
put them out of service
- Forces engineers to built resilient systems

- Automation of recovery

1 http://principlesofchaos.org

Annette Bieniusa Programming Distributed Systems Summer Term 2019

28

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Principles of Chaos Engineering?

Discipline of experimenting on a distributed system in order to build confidence in
the system’s capability to withstand turbulent conditions in production

> Focus on the measurable output of a system, rather than internal attributes of

the system
- Throughput, error rates, latency percentiles, etc.

> Prioritize disturbing events either by potential impact or estimated frequency.
- Hardware failures (e.g. dying servers)
- Software failures (e.g. malformed messages)
- Non-failure events (e.g. spikes in traffic)

> Aim for authenticity by running on production system
- But reduce negative impact by minimizing blast radius

> Automatize every step
2 http://principlesofchaos.org

Annette Bieniusa Programming Distributed Systems Summer Term 2019

29

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

The Simian Army3

> Shutdown instance. Shuts down the instance using the EC2 API. The classic chaos
monkey strategy.

> Block all network traffic. The instance is running, but cannot be reached via the
network

> Detach all EBS volumes. The instance is running, but EBS disk 1/0 will fail.
> Burn-CPU. The instance will effectively have a much slower CPU.
> Burn-lO. The instance will effectively have a much slower disk.

> Fill Disk. This monkey writes a huge file to the root device, filling up the (typically
relatively small) EC2 root disk.

3 https://github.com/Netflix/SimianArmy/wiki/The-Chaos-Monkey-Army

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

The Simian Army (cont.)

> Kill Processes. This monkey kills any java or python programs it finds every
second, simulating a faulty application, corrupted installation or faulty instance.

> Null-Route. This monkey null-routes the 10.0.0.0/8 network, which is used by the
EC2 internal network. All EC2 <-> EC2 network traffic will fail.

> Fail DNS. This monkey uses iptables to block port 53 for TCP & UDP; those are
the DNS traffic ports. This simulates a failure of your DNS servers.

> Network Corruption. This monkey corrupts a large fraction of network packets.

> Network Latency. This monkey introduces latency (1 second +- 50%) to all
network packets.

> Network Loss. This monkey drops a fraction of all network packets.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31

I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Summary - Random Testing of Distributed Systems:

> A randomized testing method PCTCP with probabilistic guarantee
- Generalizes PCT for multithreaded programs

> Jepsen testing framework
- Random testing is effective for partition tolerance bugs

> ChaosMonkey

- Failure testing on production environment

Burcu Kulahcioglu Ozkan Programming Distributed Systems Summer Term 2019

32

