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Distributed systems are prone to bugs!
‣ Distribution
‣ Asynchrony
‣ Replication
‣ …

2

‣ Many components, many sources of nondeterminism

They are difficult to test!
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Testing is a practical approach

3

.  .  .  . . . .  .
. . . . . . . . . . . 

.  .  .  . . . .  . .
.  .  .  . . . .  .

. . . . . . . . . . .

.  .  .  . . . .  .
. . . . . . . . 

.  . . . . . . .
 . . . . . . . .

 .

Systematic testing - infeasible Random testing – no guarantees
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Randomized Testing with Probabilistic Guarantees

‣ We propose a randomized scheduling algorithm: 
- for arbitrary partially ordered sets of events revealed online as the program 

is being executed
- Guaranteeing a lower bound on the probability of exposing a bug

(joint work with Rupak Majumdar, Filip Niksic, Simin Oraee, Mitra Tabaei Befrouei, Georg Weissenbacher)
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PCTCP on an example

Request

Log Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Handler Logger Terminator

Online chain partitioning:

Request

Log

Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒
𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ
𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:
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𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶1) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶2)

The program is decomposed into 
causally dependent chains of events:

Buggy if:
Flush executes 
before Log!
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PCTCP on an example

Request

Log Terminate

Flush

Flushed

Handler Logger Terminator

Online chain partitioning:

Request

Log

Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:
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𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶2) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶1)

𝑃𝐶𝑇𝐶𝑃: 1/2
𝑅𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘: 1/4

The bug is detected with probability:

Buggy if:
Flush executes 
before Log!
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Bug depth: Minimum tuple of events to expose the bug

‣ 𝑑 = 2 ⟨𝑒E, ⟩𝑒G e.g. order violation

‣ 𝑑 = 3 ⟨𝑒E, ⟩𝑒G, 𝑒I e.g. atomicity violation

‣ 𝑑 = 𝑛 ⟨𝑒E, ⟩… , 𝑒K more complicated bugs

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16) 
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Coverage: Strong 𝑑-Hitting families of schedules

A schedule 𝛼 strongly hits ⟨𝑒M, ⟩… , 𝑒NOE if for all 𝑒 ∈ 𝑃:

𝑒 ≥R 𝑒S implies 𝑒 ≥ 𝑒T for some 𝑗 ≥ 𝑖

8

𝛼1 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑒, 𝑔
strongly hits 1−tuple 𝑔 , 2−tuple 𝑒, 𝑔

𝛼2 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑔, 𝑒
strongly hits 1−tuple 𝑒 , 2−tuple 𝑔, 𝑒 , 3-tuple 𝑑, 𝑔, 𝑒

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

For each d-tuple, a strong 𝒅-hitting family has a schedule which strongly hits it.
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Challenge: How to sample uniformly at random
from strong 𝑑-hitting family for distributed systems?

‣ Events in a distributed message passing system:
upgrowing poset, revealed during execution

‣ Mutual dependency to the schedule

Schedule:

Use combinatorial results for posets!

9

𝑎 𝑒𝑑 𝑏 𝑓 𝑐 𝑔

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

- Build a schedule online
- For an arbitrary ordering
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Realizer and dimension of a poset

Realizer of P is a set of linear orders:
𝐹𝑅 = {𝐿1 , 𝐿2 , … , 𝐿𝑛}

such that: 𝐿1⋂𝐿2 … ⋂𝐿𝑛 = 𝑃

Dimension of P is the minimum size of a 
realizer

10

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

𝐿E = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

Realizer of size dim(𝑃)
- Covers all pairwise orderings!

𝐿G = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿I = 𝑐 𝑏 𝑔 𝑓 𝑎 𝑑 𝑒

dim(𝑃) = 3
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Adaptive chain covering ~ Online dimension algorithm 
‣ Decompose P into chains ‣ Compute linear extensions of P

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

C1

𝑎 𝐿1 = 𝑎

𝑑

𝐿1 = 𝑎 𝒅
C2

𝑏 𝐿1 = 𝒃 𝑎 𝑑

𝐿2 = 𝑎 𝑑 𝒃

𝐿1 = 𝑐 𝑏 𝒈 𝑓 𝑎 𝑑 𝑒

𝑒

𝐿1 = 𝑏 𝑎 𝑑 𝒆

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝒈 𝑓𝐿2 = 𝑎 𝑑 𝒆 𝑏

C3

𝑐

𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝒄

𝐿1 = 𝒄 𝑏 𝑎 𝑑 𝑒

𝐿2 = 𝒄 𝑎 𝑑 𝑒 𝑏

𝑓 𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝒈

𝐿1 = 𝑐 𝑏 𝒇 𝑎 𝑑 𝑒

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝒇

𝑔 𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝒇 𝑐

This is a strong 1-hitting family!

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿1 = 𝑐 𝑏 𝑔 𝑓 𝑎 𝑑 𝑒

𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

Adaptive chain covering ~ Strong 1-hitting family ~ Online dimension algorithm
[Felsner’97, Kloch’07]

Adaptive chain covering ~ Online dimension algorithm
[Felsner’97, Kloch’07]
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Strong 𝒅-hitting family ~ Adaptive chain covering

[Felsner, Kloch] Strong 1-hitting family ~ Adaptive chain covering 
ℎ𝑖𝑡(𝑤) = 𝑎𝑑𝑎𝑝𝑡(𝑤)

[Our main result] Strong 𝒅-hitting family ~ Adaptive chain covering
ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 K

NOE 𝑑 − 1 !

Sample from this set of 
schedules!

12

steps in which 𝑒E, 𝑒G, … , 𝑒NOE
were added

chain id

Index the schedules in the 
strong d-hitting family by: 

𝜆, 𝑛E, 𝑛G, … , 𝑛NOE strongly hits eM ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒E, 𝑒2, … , 𝑒NOE

𝑛: number of events
𝑑: bug depth
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PCTCP : PCT + Chain Partitioning

‣ Randomly generate a (𝑑 − 1)-tuple: 𝑛E, 𝑛G, … , 𝑛NOE
‣ Partition P into chains online
‣ Assign random distinct initial priorities > 𝑑

‣ Reduce priority at: 𝑒E, 𝑒G, … , 𝑒NOE to (𝑑 − 𝑖 − 1) for 𝑒S

C1C2Ck-1

𝑒E

𝑒G

𝑒I

? ? ?C1

𝑒G
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C2

𝑒E

….

Ck-1

𝑒I

Generates randomly a schedule index 𝜆, 𝑛E, 𝑛G, … , 𝑛NOE :

𝑒M

Ck = 𝜆

strongly hits eM ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒E, 𝑒2, … , 𝑒NOE
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The prob. of hitting a bug – Generalizes the PCT result 

‣ Not possible to partition 𝑃 of width 𝑤 into 𝑤 chains online in general:

We sample from at most 𝑤G𝑛NOE schedules, 

hitting a bug of depth 𝑑 with a probability of at least 
E

klKmno

ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 K
NOE 𝑑 − 1 ! ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 𝑛NOE

online width of the poset of width 𝑤

‣ [Felsner, 95]  The best possible on-line partitioning algorithm 
partitions upgrowing 𝑃 of width 𝑤 into kpE

G chains! 

C1 C1 C2 C1 C2 C1 C2 C3
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𝑛: number of events
𝑑: bug depth
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Experimental results - Cassandra

# Event 
Labels (d)

Max #
Events (n)

Avg of
Max # Chains

Max #
Chains

# Runs #Buggy Time(s)

Random Walk - 54 6.97 11 1000 0 481.95

PCTCP d = 4 54 5.65 11 1000 0 505.73

PCTCP d = 5 54 5.73 11 1000 1 503.81

PCTCP d = 6 54 5.80 11 1000 1 512.00

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)
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Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp

Source code at: https://gitlab.mpi-sws.org/rupak/hitmc
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Experimental results - ZooKeeper

16

Start(1)

Msg(1,1)

Msg(1,2)

Msg(1,3)

Msg(1,1)

Crash(1)

Start(2)

Msg(2,1) Crash(2)

Start(2)

Msg(2,1)

Msg(2,2)

Crash(2)

Start(3)

Msg(3,1) Crash(3)

Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp

Source code at: https://gitlab.mpi-sws.org/rupak/hitmc
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Related Work
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d-Hitting families of schedules, trees
[Chistikov, Majumdar, Niksic, 2016]

𝑎

𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ

Our method hits a bug with a prob. 
E

qNqrs(k)Kmno

Generalizes the PCT result  
E

t Kmno

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑗

𝑔

PCT for multithreaded programs, linear orders 
[Burckhardt, Kothari, Musuvathi, Nagarakatte, 2010]

Our method samples from hitting families
for any arbitrary upgrowing poset
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Current Work: Partial Order Reduction for Hitting Families

Node 1 Node 2
A

18

Some schedules in strong hitting family are equivalent :

e.g. Two schedules strongly hitting 𝐸 and 𝐷 :

A	B	C	D	E			≡ A	B	C	E	D		

C

D

B

Can we use POR techniques for randomized testing?

Node 3

E

CA

B

Upgrowing Poset:

D E
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Depth-bounded set of schedules

Strong d-hitting 
family 

Partial order reduction

Depth-Bounded + Dependency-Aware Random Testing 

Sample from a smaller set of schedules!
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Summary – PCTCP :

‣ Depth-bounded sampling from strong d-hitting families of schedules
- Combinatorial results on dimension theory, adaptive chain covering
- Indexing strong d-hitting families of schedules of size ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 𝑛NOE

‣ Our result generalizes the PCT guarantee:
- Hitting a bug with prob. of at least 1 / (𝑎𝑑𝑎𝑝𝑡(𝑤)𝑛NOE)

20

A randomized testing method PCTCP with probabilistic guarantees
for distributed message passing systems  
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Randomized Testing with Jepsen 

‣ Test tool for safety of distributed databases, queueing systems, consensus 
systems etc.

‣ Black-box testing by randomly inserting network partition faults
‣ Developed by Kyle Kingsbury, available open-source
‣ Approach:

1. Generate random client operations
2. Record history
3. Verify that history is consistent with respect to the model

21
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Example: Jepsen Analysis for MongoDB

‣ MongoDB is a document-oriented database
‣ Primary node accepting writes and async replication to other nodes

‣ 5 nodes, n1 is primary
‣ Split into two partitions (n1, n2 and n3, n4, n5), n5 becomes new primary
‣ Heal the partition

Test scenario: 

22
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How many writes get lost?

‣ In Version 2.4.1. (2013)
- Writes completed 93.608 seconds 6000 total 5700 acknowledged 3319 

survivors 2381 acknowledged writes lost!

‣ Even when imposing writes to majority:
- 6000 total 5700 acknowledged 5701 survivors 2 acknowledged writes lost! 3 

unacknowledged writes found!

‣ In Version 3.4.1 all tests are passed (when using the right configuration 
with majority writes and linearizable reads) !!

23
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Coverage notions for network partitions:
‣ k-Splitting

- Split network into k distinct blocks (typically k = 2 or k = 3)
‣ (k,l)-Separation

- Split subsets of nodes with specific role
‣ Minority isolation

- Constraints on number of nodes in a block (e.g. leader is in the smaller block 
of a partition)

With high probability, O(log n) random partitions simultaneously
provide full coverage of partitioning schemes that incur typical bugs.

24

Why Is Random Testing Effective for Partition Tolerance 
Bugs? (Majumdar & Niksic, 2018)
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Why Is Random Testing Effective for Partition Tolerance 
Bugs? (Majumdar & Niksic, 2018)

Tests and goal coverage:

(from Filip Niksic’s presentation @ POPL’18)

Covering family = Set of tests cover all goals

Small covering families = Efficient testing

25
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Why Is Random Testing Effective for Partition Tolerance 
Bugs? (Majumdar & Niksic, 2018)

Random Testing

26

(from Filip Niksic’s presentation @ POPL’18)
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Why Is Random Testing Effective for Partition Tolerance Bugs?

‣ Let G be the set of goals and P[random T covers G ] ≥ p
‣ Theorem: There exists a covering family of size p-1 log|G|.

- P[ T random does not cover G ] ≤ 1 – p
- P[ K independent T do not cover G ] ≤ (1 - p)K

- P[ K independent T are not a covering family ] ≤ |G| (1 - p)K

For K = p-1 log|G|, this probability is strictly less than 1.
Therefore, there must exist K tests that are a covering family!

27

(from Filip Niksic’s presentation @ POPL’18)
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ChaosMonkey

Unleash a wild monkey with a weapon in your data center (or cloud region) to 
randomly shoot down instances and chew through cables1

‣ Built by Netflix in 2011 during their cloud migration
‣ Testing for fault-tolerance and quality of service in turbulent situations
‣ Random selection of instances in the production environment and deliberately 

put them out of service
- Forces engineers to built resilient systems
- Automation of recovery

1 http://principlesofchaos.org
28
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Principles of Chaos Engineering2

Discipline of experimenting on a distributed system in order to build confidence in 
the system’s capability to withstand turbulent conditions in production
‣ Focus on the measurable output of a system, rather than internal attributes of 

the system
- Throughput, error rates, latency percentiles, etc.

‣ Prioritize disturbing events either by potential impact or estimated frequency.
- Hardware failures (e.g. dying servers)
- Software failures (e.g. malformed messages)
- Non-failure events (e.g. spikes in traffic)

‣ Aim for authenticity by running on production system
- But reduce negative impact by minimizing blast radius

‣ Automatize every step
2 http://principlesofchaos.org

29
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The Simian Army3

‣ Shutdown instance. Shuts down the instance using the EC2 API. The classic chaos 
monkey strategy.

‣ Block all network traffic. The instance is running, but cannot be reached via the 
network

‣ Detach all EBS volumes. The instance is running, but EBS disk I/O will fail.
‣ Burn-CPU. The instance will effectively have a much slower CPU.
‣ Burn-IO. The instance will effectively have a much slower disk.
‣ Fill Disk. This monkey writes a huge file to the root device, filling up the (typically 

relatively small) EC2 root disk.

3 https://github.com/Netflix/SimianArmy/wiki/The-Chaos-Monkey-Army
30
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The Simian Army (cont.)

‣ Kill Processes. This monkey kills any java or python programs it finds every 
second, simulating a faulty application, corrupted installation or faulty instance.

‣ Null-Route. This monkey null-routes the 10.0.0.0/8 network, which is used by the 
EC2 internal network. All EC2 <-> EC2 network traffic will fail.

‣ Fail DNS. This monkey uses iptables to block port 53 for TCP & UDP; those are 
the DNS traffic ports. This simulates a failure of your DNS servers.

‣ Network Corruption. This monkey corrupts a large fraction of network packets.
‣ Network Latency. This monkey introduces latency (1 second +- 50%) to all 

network packets.
‣ Network Loss. This monkey drops a fraction of all network packets.

31
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Summary - Random Testing of Distributed Systems:

32

‣ A randomized testing method PCTCP with probabilistic guarantee
- Generalizes PCT for multithreaded programs

‣ Jepsen testing framework
- Random testing is effective for partition tolerance bugs

‣ ChaosMonkey
- Failure testing on production environment


