
Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Randomized Testing of Distributed Systems

Burcu Kulahcioglu Ozkan

TU Kaiserslautern

Summer Term 2019

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Distributed systems are prone to bugs!
‣ Distribution
‣ Asynchrony
‣ Replication
‣ …

2

‣ Many components, many sources of nondeterminism

They are difficult to test!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Testing is a practical approach

3

.
.

.
.

.

.
.

.

 .

Systematic testing - infeasible Random testing – no guarantees

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Randomized Testing with Probabilistic Guarantees

‣ We propose a randomized scheduling algorithm:
- for arbitrary partially ordered sets of events revealed online as the program

is being executed
- Guaranteeing a lower bound on the probability of exposing a bug

(joint work with Rupak Majumdar, Filip Niksic, Simin Oraee, Mitra Tabaei Befrouei, Georg Weissenbacher)

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

PCTCP on an example

Request

Log Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Handler Logger Terminator

Online chain partitioning:

Request

Log

Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒
𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ
𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:

5

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶1) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶2)

The program is decomposed into
causally dependent chains of events:

Buggy if:
Flush executes
before Log!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

PCTCP on an example

Request

Log Terminate

Flush

Flushed

Handler Logger Terminator

Online chain partitioning:

Request

Log

Terminate

Flush

Flushed

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:

6

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶2) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶1)

𝑃𝐶𝑇𝐶𝑃: 1/2
𝑅𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘: 1/4

The bug is detected with probability:

Buggy if:
Flush executes
before Log!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Bug depth: Minimum tuple of events to expose the bug

‣ 𝑑 = 2 ⟨𝑒E, ⟩𝑒G e.g. order violation

‣ 𝑑 = 3 ⟨𝑒E, ⟩𝑒G, 𝑒I e.g. atomicity violation

‣ 𝑑 = 𝑛 ⟨𝑒E, ⟩… , 𝑒K more complicated bugs

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)

7

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Coverage: Strong 𝑑-Hitting families of schedules

A schedule 𝛼 strongly hits ⟨𝑒M, ⟩… , 𝑒NOE if for all 𝑒 ∈ 𝑃:

𝑒 ≥R 𝑒S implies 𝑒 ≥ 𝑒T for some 𝑗 ≥ 𝑖

8

𝛼1 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑒, 𝑔
strongly hits 1−tuple 𝑔 , 2−tuple 𝑒, 𝑔

𝛼2 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑔, 𝑒
strongly hits 1−tuple 𝑒 , 2−tuple 𝑔, 𝑒 , 3-tuple 𝑑, 𝑔, 𝑒

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

For each d-tuple, a strong 𝒅-hitting family has a schedule which strongly hits it.

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Challenge: How to sample uniformly at random
from strong 𝑑-hitting family for distributed systems?

‣ Events in a distributed message passing system:
upgrowing poset, revealed during execution

‣ Mutual dependency to the schedule

Schedule:

Use combinatorial results for posets!

9

𝑎 𝑒𝑑 𝑏 𝑓 𝑐 𝑔

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

- Build a schedule online
- For an arbitrary ordering

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Realizer and dimension of a poset

Realizer of P is a set of linear orders:
𝐹𝑅 = {𝐿1 , 𝐿2 , … , 𝐿𝑛}

such that: 𝐿1⋂𝐿2 … ⋂𝐿𝑛 = 𝑃

Dimension of P is the minimum size of a
realizer

10

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

𝐿E = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

Realizer of size dim(𝑃)
- Covers all pairwise orderings!

𝐿G = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿I = 𝑐 𝑏 𝑔 𝑓 𝑎 𝑑 𝑒

dim(𝑃) = 3

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 11

Adaptive chain covering ~ Online dimension algorithm
‣ Decompose P into chains ‣ Compute linear extensions of P

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

C1

𝑎 𝐿1 = 𝑎

𝑑

𝐿1 = 𝑎 𝒅
C2

𝑏 𝐿1 = 𝒃 𝑎 𝑑

𝐿2 = 𝑎 𝑑 𝒃

𝐿1 = 𝑐 𝑏 𝒈 𝑓 𝑎 𝑑 𝑒

𝑒

𝐿1 = 𝑏 𝑎 𝑑 𝒆

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝒈 𝑓𝐿2 = 𝑎 𝑑 𝒆 𝑏

C3

𝑐

𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝒄

𝐿1 = 𝒄 𝑏 𝑎 𝑑 𝑒

𝐿2 = 𝒄 𝑎 𝑑 𝑒 𝑏

𝑓 𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝒈

𝐿1 = 𝑐 𝑏 𝒇 𝑎 𝑑 𝑒

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝒇

𝑔 𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝒇 𝑐

This is a strong 1-hitting family!

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿1 = 𝑐 𝑏 𝑔 𝑓 𝑎 𝑑 𝑒

𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

Adaptive chain covering ~ Strong 1-hitting family ~ Online dimension algorithm
[Felsner’97, Kloch’07]

Adaptive chain covering ~ Online dimension algorithm
[Felsner’97, Kloch’07]

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Strong 𝒅-hitting family ~ Adaptive chain covering

[Felsner, Kloch] Strong 1-hitting family ~ Adaptive chain covering
ℎ𝑖𝑡(𝑤) = 𝑎𝑑𝑎𝑝𝑡(𝑤)

[Our main result] Strong 𝒅-hitting family ~ Adaptive chain covering
ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 K

NOE 𝑑 − 1 !

Sample from this set of
schedules!

12

steps in which 𝑒E, 𝑒G, … , 𝑒NOE
were added

chain id

Index the schedules in the
strong d-hitting family by:

𝜆, 𝑛E, 𝑛G, … , 𝑛NOE strongly hits eM ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒E, 𝑒2, … , 𝑒NOE

𝑛: number of events
𝑑: bug depth

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

PCTCP : PCT + Chain Partitioning

‣ Randomly generate a (𝑑 − 1)-tuple: 𝑛E, 𝑛G, … , 𝑛NOE
‣ Partition P into chains online
‣ Assign random distinct initial priorities > 𝑑

‣ Reduce priority at: 𝑒E, 𝑒G, … , 𝑒NOE to (𝑑 − 𝑖 − 1) for 𝑒S

C1C2Ck-1

𝑒E

𝑒G

𝑒I

? ? ?C1

𝑒G

13

C2

𝑒E

….

Ck-1

𝑒I

Generates randomly a schedule index 𝜆, 𝑛E, 𝑛G, … , 𝑛NOE :

𝑒M

Ck = 𝜆

strongly hits eM ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒E, 𝑒2, … , 𝑒NOE

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

The prob. of hitting a bug – Generalizes the PCT result

‣ Not possible to partition 𝑃 of width 𝑤 into 𝑤 chains online in general:

We sample from at most 𝑤G𝑛NOE schedules,

hitting a bug of depth 𝑑 with a probability of at least
E

klKmno

ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 K
NOE 𝑑 − 1 ! ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 𝑛NOE

online width of the poset of width 𝑤

‣ [Felsner, 95] The best possible on-line partitioning algorithm
partitions upgrowing 𝑃 of width 𝑤 into kpE

G chains!

C1 C1 C2 C1 C2 C1 C2 C3

14

𝑛: number of events
𝑑: bug depth

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Experimental results - Cassandra

Event
Labels (d)

Max #
Events (n)

Avg of
Max # Chains

Max #
Chains

Runs #Buggy Time(s)

Random Walk - 54 6.97 11 1000 0 481.95

PCTCP d = 4 54 5.65 11 1000 0 505.73

PCTCP d = 5 54 5.73 11 1000 1 503.81

PCTCP d = 6 54 5.80 11 1000 1 512.00

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)

15

Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp

Source code at: https://gitlab.mpi-sws.org/rupak/hitmc

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Experimental results - ZooKeeper

16

Start(1)

Msg(1,1)

Msg(1,2)

Msg(1,3)

Msg(1,1)

Crash(1)

Start(2)

Msg(2,1) Crash(2)

Start(2)

Msg(2,1)

Msg(2,2)

Crash(2)

Start(3)

Msg(3,1) Crash(3)

Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp

Source code at: https://gitlab.mpi-sws.org/rupak/hitmc

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Related Work

17

d-Hitting families of schedules, trees
[Chistikov, Majumdar, Niksic, 2016]

𝑎

𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ

Our method hits a bug with a prob.
E

qNqrs(k)Kmno

Generalizes the PCT result
E

t Kmno

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

ℎ

𝑖

𝑗

𝑔

PCT for multithreaded programs, linear orders
[Burckhardt, Kothari, Musuvathi, Nagarakatte, 2010]

Our method samples from hitting families
for any arbitrary upgrowing poset

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Current Work: Partial Order Reduction for Hitting Families

Node 1 Node 2
A

18

Some schedules in strong hitting family are equivalent :

e.g. Two schedules strongly hitting 𝐸 and 𝐷 :

A	B	C	D	E			≡ A	B	C	E	D		

C

D

B

Can we use POR techniques for randomized testing?

Node 3

E

CA

B

Upgrowing Poset:

D E

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 19

Depth-bounded set of schedules

Strong d-hitting
family

Partial order reduction

Depth-Bounded + Dependency-Aware Random Testing

Sample from a smaller set of schedules!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Summary – PCTCP :

‣ Depth-bounded sampling from strong d-hitting families of schedules
- Combinatorial results on dimension theory, adaptive chain covering
- Indexing strong d-hitting families of schedules of size ℎ𝑖𝑡N 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 𝑛NOE

‣ Our result generalizes the PCT guarantee:
- Hitting a bug with prob. of at least 1 / (𝑎𝑑𝑎𝑝𝑡(𝑤)𝑛NOE)

20

A randomized testing method PCTCP with probabilistic guarantees
for distributed message passing systems

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

Randomized Testing with Jepsen

‣ Test tool for safety of distributed databases, queueing systems, consensus
systems etc.

‣ Black-box testing by randomly inserting network partition faults
‣ Developed by Kyle Kingsbury, available open-source
‣ Approach:

1. Generate random client operations
2. Record history
3. Verify that history is consistent with respect to the model

21

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

Example: Jepsen Analysis for MongoDB

‣ MongoDB is a document-oriented database
‣ Primary node accepting writes and async replication to other nodes

‣ 5 nodes, n1 is primary
‣ Split into two partitions (n1, n2 and n3, n4, n5), n5 becomes new primary
‣ Heal the partition

Test scenario:

22

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

How many writes get lost?

‣ In Version 2.4.1. (2013)
- Writes completed 93.608 seconds 6000 total 5700 acknowledged 3319

survivors 2381 acknowledged writes lost!

‣ Even when imposing writes to majority:
- 6000 total 5700 acknowledged 5701 survivors 2 acknowledged writes lost! 3

unacknowledged writes found!

‣ In Version 3.4.1 all tests are passed (when using the right configuration
with majority writes and linearizable reads) !!

23

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Coverage notions for network partitions:
‣ k-Splitting

- Split network into k distinct blocks (typically k = 2 or k = 3)
‣ (k,l)-Separation

- Split subsets of nodes with specific role
‣ Minority isolation

- Constraints on number of nodes in a block (e.g. leader is in the smaller block
of a partition)

With high probability, O(log n) random partitions simultaneously
provide full coverage of partitioning schemes that incur typical bugs.

24

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Tests and goal coverage:

(from Filip Niksic’s presentation @ POPL’18)

Covering family = Set of tests cover all goals

Small covering families = Efficient testing

25

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Why Is Random Testing Effective for Partition Tolerance
Bugs? (Majumdar & Niksic, 2018)

Random Testing

26

(from Filip Niksic’s presentation @ POPL’18)

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Why Is Random Testing Effective for Partition Tolerance Bugs?

‣ Let G be the set of goals and P[random T covers G] ≥ p
‣ Theorem: There exists a covering family of size p-1 log|G|.

- P[T random does not cover G] ≤ 1 – p
- P[K independent T do not cover G] ≤ (1 - p)K

- P[K independent T are not a covering family] ≤ |G| (1 - p)K

For K = p-1 log|G|, this probability is strictly less than 1.
Therefore, there must exist K tests that are a covering family!

27

(from Filip Niksic’s presentation @ POPL’18)

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

ChaosMonkey

Unleash a wild monkey with a weapon in your data center (or cloud region) to
randomly shoot down instances and chew through cables1

‣ Built by Netflix in 2011 during their cloud migration
‣ Testing for fault-tolerance and quality of service in turbulent situations
‣ Random selection of instances in the production environment and deliberately

put them out of service
- Forces engineers to built resilient systems
- Automation of recovery

1 http://principlesofchaos.org
28

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

Principles of Chaos Engineering2

Discipline of experimenting on a distributed system in order to build confidence in
the system’s capability to withstand turbulent conditions in production
‣ Focus on the measurable output of a system, rather than internal attributes of

the system
- Throughput, error rates, latency percentiles, etc.

‣ Prioritize disturbing events either by potential impact or estimated frequency.
- Hardware failures (e.g. dying servers)
- Software failures (e.g. malformed messages)
- Non-failure events (e.g. spikes in traffic)

‣ Aim for authenticity by running on production system
- But reduce negative impact by minimizing blast radius

‣ Automatize every step
2 http://principlesofchaos.org

29

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

The Simian Army3

‣ Shutdown instance. Shuts down the instance using the EC2 API. The classic chaos
monkey strategy.

‣ Block all network traffic. The instance is running, but cannot be reached via the
network

‣ Detach all EBS volumes. The instance is running, but EBS disk I/O will fail.
‣ Burn-CPU. The instance will effectively have a much slower CPU.
‣ Burn-IO. The instance will effectively have a much slower disk.
‣ Fill Disk. This monkey writes a huge file to the root device, filling up the (typically

relatively small) EC2 root disk.

3 https://github.com/Netflix/SimianArmy/wiki/The-Chaos-Monkey-Army
30

Summer Term 2019Programming Distributed SystemsAnnette Bieniusa

The Simian Army (cont.)

‣ Kill Processes. This monkey kills any java or python programs it finds every
second, simulating a faulty application, corrupted installation or faulty instance.

‣ Null-Route. This monkey null-routes the 10.0.0.0/8 network, which is used by the
EC2 internal network. All EC2 <-> EC2 network traffic will fail.

‣ Fail DNS. This monkey uses iptables to block port 53 for TCP & UDP; those are
the DNS traffic ports. This simulates a failure of your DNS servers.

‣ Network Corruption. This monkey corrupts a large fraction of network packets.
‣ Network Latency. This monkey introduces latency (1 second +- 50%) to all

network packets.
‣ Network Loss. This monkey drops a fraction of all network packets.

31

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Summary - Random Testing of Distributed Systems:

32

‣ A randomized testing method PCTCP with probabilistic guarantee
- Generalizes PCT for multithreaded programs

‣ Jepsen testing framework
- Random testing is effective for partition tolerance bugs

‣ ChaosMonkey
- Failure testing on production environment

