Randomized Testing of Distributed Systems

Burcu Kulahcioglu Ozkan

TU Kaiserslautern

Summer Term 2019
Distributed systems are prone to bugs!

- Distribution
- Asynchrony
- Replication
- ...

They are difficult to test!

- Many components, many sources of nondeterminism
Testing is a practical approach

Systematic testing - infeasible

Random testing – no guarantees
Randomized Testing with Probabilistic Guarantees

(joint work with Rupak Majumdar, Filip Niksic, Simin Oraee, Mitra Tabaei Befrouei, Georg Weissenbacher)

‣ We propose a randomized scheduling algorithm:
 - for arbitrary partially ordered sets of events revealed online as the program is being executed
 - Guaranteeing a lower bound on the probability of exposing a bug
PCTCP on an example

The program is decomposed into causally dependent chains of events:

- **C1** = [Request, Log]
- **C2** = [Terminate, Flush, Flushed]

Priority Order:

- \(\text{priority}(C1) > \text{priority}(C2) \)

Buggy if: **Flush executes before Log!**
PCTCP on an example

The bug is detected with probability:

\[\text{PCTCP: } \frac{1}{2} \]
\[\text{Random walk: } \frac{1}{4} \]

PCTCP:

- **Request**
- **Log**
- **Terminate**
- **Flush**
- **Flushed**

Buggy if:
- **Flush** executes before **Log**!

Upgrowing Poset:

- **Request**
- **Log**
- **Terminate**
- **Flush**
- **Flushed**

Online chain partitioning:

- \(C_1 = [\text{Request}, \text{Log}] \)
- \(C_2 = [\text{Terminate}, \text{Flush}, \text{Flushed}] \)

\[\text{priority}(C_2) > \text{priority}(C_1) \]
Bug depth: Minimum tuple of events to expose the bug

- $d = 2 \langle e_1, e_2 \rangle$ e.g. order violation

- $d = 3 \langle e_1, e_2, e_3 \rangle$ e.g. atomicity violation

- $d = n \langle e_1, \ldots, e_n \rangle$ more complicated bugs

Bug in Cassandra 2.0.0 *(img. from Leesatapornwongsa et. al. ASPLOS’16)*
Coverage: Strong d-Hitting families of schedules

A schedule α strongly hits $\langle e_0, \ldots, e_{d-1} \rangle$ if for all $e \in P$:

$e \geq_{\alpha} e_i$ implies $e \geq e_j$ for some $j \geq i$

$\alpha_1 = a, b, c, d, f, e, g$

strongly hits 1–tuple $\langle g \rangle$, 2–tuple $\langle e, g \rangle$

$\alpha_2 = a, b, c, d, f, g, e$

strongly hits 1–tuple $\langle e \rangle$, 2–tuple $\langle g, e \rangle$, 3–tuple $\langle d, g, e \rangle$

For each d-tuple, a strong d-hitting family has a schedule which strongly hits it.
Challenge: How to sample uniformly at random from strong d-hitting family for distributed systems?

- Events in a distributed message passing system:
 upgrowing poset, revealed during execution
- Mutual dependency to the schedule

Use combinatorial results for posets!

Schedule: $a \ d \ e \ b \ f \ c \ g$
Realizer and dimension of a poset

Realizer of P is a set of linear orders:

$$F_R = \{L_1, L_2, \ldots, L_n\}$$

such that: $L_1 \cap L_2 \ldots \cap L_n = P$

Dimension of P is the minimum size of a realizer

Realizer of size $\dim(P)$
- Covers all pairwise orderings!

$$L_1 = a \ d \ e \ b \ f \ c \ g$$

$$L_2 = c \ a \ d \ e \ b \ g \ f$$

$$L_3 = c \ b \ g \ f \ a \ d \ e$$

$$\dim(P) = 3$$
Adaptive chain covering ~ Online dimension algorithm

- Decompose P into chains
- Compute linear extensions of P

$L_1 = b c d f a d e$
$L_2 = a d b e b g f$
$L_3 = a d e b f c g$

This is a strong 1-hitting family!
Strong \textbf{d}-hitting family \sim Adaptive chain covering

[Felsner, Kloch] Strong 1-hitting family \sim Adaptive chain covering

\[\text{hit}(w) = \text{adapt}(w) \]

\[\textbf{[Our main result]} \text{ Strong } \textbf{d}-\text{hitting family} \sim \text{Adaptive chain covering} \]

\[\text{hit}_d(w, n) \leq \text{adapt}(w)\left(\frac{n}{d-1}\right)(d-1) \]

\text{n: number of events} \quad \text{d: bug depth}

Index the schedules in the strong \textbf{d}-hitting family by:

\[\langle \lambda, n_1, n_2, \ldots, n_{d-1} \rangle \]

Sample from this set of schedules!

\text{chain id} \quad \text{steps in which } e_1, e_2, \ldots, e_{d-1} \text{ were added}

strongly hits \(e_0 \in \text{Chain}(\lambda) \)

\(e_1, e_2, \ldots, e_{d-1} \)
PCTCP : PCT + Chain Partitioning

Generates randomly a schedule index \(\langle \lambda, n_1, n_2, \ldots, n_{d-1} \rangle \):

- Randomly generate a \((d - 1)\)-tuple: \(\langle n_1, n_2, \ldots, n_{d-1} \rangle \)
- Partition \(P \) into chains online
- Assign random distinct initial priorities > \(d \)
- Reduce priority at: \(e_1, e_2, \ldots, e_{d-1} \) to \((d - i - 1)\) for \(e_i \)

\[
\begin{align*}
\text{C}_1 & \quad \text{C}_2 & \quad \cdots & \quad \text{C}_{k-1} & \quad \text{C}_k = \lambda \\
\text{C}_1 & \quad \text{C}_2 & \quad \cdots & \quad \text{C}_{k-1} & \quad \text{C}_k = \lambda
\end{align*}
\]
The prob. of hitting a bug – Generalizes the PCT result

\[\text{hit}_d(w, n) \leq \text{adapt}(w) \binom{n}{w-1}(d-1)! \leq \text{adapt}(w) n^{d-1} \]

online width of the poset of width \(w \)

- Not possible to partition \(P \) of width \(w \) into \(w \) chains online in general:

- [Felsner, 95] The best possible on-line partitioning algorithm partitions upgrowing \(P \) of width \(w \) into \(\binom{w+1}{2} \) chains!

We sample from at most \(w^2 n^{d-1} \) schedules,

hitting a bug of depth \(d \) with a probability of at least \(\frac{1}{w^2 n^{d-1}} \)

\(n \): number of events

\(d \): bug depth
Experimental results - Cassandra

<table>
<thead>
<tr>
<th># Event Labels (d)</th>
<th>Max # Events (n)</th>
<th>Avg of Max # Chains</th>
<th>Max # Chains</th>
<th># Runs</th>
<th>#Buggy</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk</td>
<td>-</td>
<td>54</td>
<td>6.97</td>
<td>11</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>PCTCP d = 4</td>
<td>54</td>
<td>54</td>
<td>5.65</td>
<td>11</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>PCTCP d = 5</td>
<td>54</td>
<td>54</td>
<td>5.73</td>
<td>11</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>PCTCP d = 6</td>
<td>54</td>
<td>54</td>
<td>5.80</td>
<td>11</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>

Bug in Cassandra 2.0.0 *(img. from Leesatapornwongsa et. al. ASPLOS’16)*

Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp
Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/rupak/hitmc
Experimental results - ZooKeeper

Source code at: https://gitlab.mpi-sws.org/fniksic/PSharp
Source code at: https://gitlab.mpi-sws.org/burcu/pctcp-cass
Source code at: https://gitlab.mpi-sws.org/rupak/hitmc
Related Work

PCT for multithreaded programs, linear orders
[Burckhardt, Kothari, Musuvathi, Nagarakatte, 2010]

Our method hits a bug with a prob. \(\frac{1}{\text{adapt}(w)n^{d-1}} \)

Generalizes the PCT result \(\frac{1}{kn^{d-1}} \)

d-Hitting families of schedules, trees
[Chistikov, Majumdar, Niksic, 2016]

Our method samples from hitting families for any arbitrary upgrowing poset

\(a \rightarrow d \rightarrow h \)
\(b \rightarrow e \rightarrow i \)
\(c \rightarrow f \rightarrow j \)
\(g \)

\(a \)
\(b \rightarrow c \)
\(d \rightarrow e \rightarrow f \)
\(g \rightarrow h \)
Current Work: Partial Order Reduction for Hitting Families

Some schedules in strong hitting family are equivalent:

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \equiv A \rightarrow B \rightarrow C \rightarrow E \rightarrow D \]

Can we use POR techniques for randomized testing?

Upgrowing Poset:

\[A \rightarrow C \rightarrow D \rightarrow E \rightarrow B \]

e.g. Two schedules strongly hitting \(\langle E \rangle \) and \(\langle D \rangle \):

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \equiv A \rightarrow B \rightarrow C \rightarrow E \rightarrow D \]
Depth-Bounded + Dependency-Aware Random Testing

Depth-bounded set of schedules

Partial order reduction

Sample from a smaller set of schedules!
Summary – PCTCP:

A randomized testing method PCTCP with probabilistic guarantees for distributed message passing systems

- **Depth-bounded sampling** from strong d-hitting families of schedules
 - Combinatorial results on dimension theory, adaptive chain covering
 - Indexing strong d-hitting families of schedules of size $hit_d(w,n) \leq adapt(w)n^{d-1}$

- Our result generalizes the PCT guarantee:
 - Hitting a bug with prob. of at least $1 / (adapt(w)n^{d-1})$
Randomized Testing with Jepsen

- Test tool for safety of distributed databases, queueing systems, consensus systems etc.
- Black-box testing by randomly inserting network partition faults
- Developed by Kyle Kingsbury, available open-source
- Approach:
 1. Generate random client operations
 2. Record history
 3. Verify that history is consistent with respect to the model
Example: Jepsen Analysis for MongoDB

- MongoDB is a document-oriented database
- Primary node accepting writes and async replication to other nodes

Test scenario:

- 5 nodes, n1 is primary
- Split into two partitions (n1, n2 and n3, n4, n5), n5 becomes new primary
- Heal the partition
How many writes get lost?

› In Version 2.4.1. (2013)
 - Writes completed 93.608 seconds 6000 total 5700 acknowledged 3319 survivors 2381 acknowledged writes lost!

› Even when imposing writes to majority:
 - 6000 total 5700 acknowledged 5701 survivors 2 acknowledged writes lost! 3 unacknowledged writes found!

› In Version 3.4.1 all tests are passed (when using the right configuration with majority writes and linearizable reads) !!

Coverage notions for network partitions:

- **k-Splitting**
 - Split network into k distinct blocks (typically k = 2 or k = 3)

- **(k,l)-Separation**
 - Split subsets of nodes with specific role

- **Minority isolation**
 - Constraints on number of nodes in a block (e.g. leader is in the smaller block of a partition)

With high probability, $O(\log n)$ random partitions simultaneously provide full coverage of partitioning schemes that incur typical bugs.

Tests and goal coverage:

Covering family = Set of tests cover all goals

Small covering families = Efficient testing

(from Filip Niksic’s presentation @ POPL’18)

Random Testing

Pick a random test from T

Fix a goal from G

(from Filip Niksic’s presentation @ POPL’18)
Why Is Random Testing Effective for Partition Tolerance Bugs?

- Let G be the set of goals and $P[\text{random } T \text{ covers } G] \geq p$
- Theorem: There exists a covering family of size $p^{-1} \log |G|$.
 - $P[T \text{ random does not cover } G] \leq 1 - p$
 - $P[K \text{ independent } T \text{ do not cover } G] \leq (1 - p)^K$
 - $P[K \text{ independent } T \text{ are not a covering family }] \leq |G| (1 - p)^K$

For $K = p^{-1} \log |G|$, this probability is strictly less than 1. Therefore, there must exist K tests that are a covering family!

(from Filip Niksic’s presentation @ POPL’18)
ChaosMonkey

*Unleash a wild monkey with a weapon in your data center (or cloud region) to randomly shoot down instances and chew through cables*¹

- Built by Netflix in 2011 during their cloud migration
- Testing for fault-tolerance and quality of service in turbulent situations
- Random selection of instances in the production environment and deliberately put them out of service
 - Forces engineers to built resilient systems
 - Automation of recovery

¹ http://principlesofchaos.org
Principles of Chaos Engineering²

Discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in production

‣ Focus on the measurable output of a system, rather than internal attributes of the system
 - Throughput, error rates, latency percentiles, etc.

‣ Prioritize disturbing events either by potential impact or estimated frequency.
 - Hardware failures (e.g. dying servers)
 - Software failures (e.g. malformed messages)
 - Non-failure events (e.g. spikes in traffic)

‣ Aim for authenticity by running on production system
 - But reduce negative impact by minimizing blast radius

‣ Automatize every step

² http://principlesofchaos.org
The Simian Army

- **Shutdown instance.** Shuts down the instance using the EC2 API. The classic chaos monkey strategy.
- **Block all network traffic.** The instance is running, but cannot be reached via the network.
- **Detach all EBS volumes.** The instance is running, but EBS disk I/O will fail.
- **Burn-CPU.** The instance will effectively have a much slower CPU.
- **Burn-IO.** The instance will effectively have a much slower disk.
- **Fill Disk.** This monkey writes a huge file to the root device, filling up the (typically relatively small) EC2 root disk.

3 https://github.com/Netflix/SimianArmy/wiki/The-Chaos-Monkey-Army
The Simian Army (cont.)

- **Kill Processes.** This monkey kills any java or python programs it finds every second, simulating a faulty application, corrupted installation or faulty instance.

- **Null-Route.** This monkey null-routes the 10.0.0.0/8 network, which is used by the EC2 internal network. All EC2 <-> EC2 network traffic will fail.

- **Fail DNS.** This monkey uses iptables to block port 53 for TCP & UDP; those are the DNS traffic ports. This simulates a failure of your DNS servers.

- **Network Corruption.** This monkey corrupts a large fraction of network packets.

- **Network Latency.** This monkey introduces latency (1 second +- 50%) to all network packets.

- **Network Loss.** This monkey drops a fraction of all network packets.
Summary - Random Testing of Distributed Systems:

› A randomized testing method PCTCP with probabilistic guarantee
 - Generalizes PCT for multithreaded programs

› Jepsen testing framework
 - Random testing is effective for partition tolerance bugs

› ChaosMonkey
 - Failure testing on production environment