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Distributed systems are prone to bugs!

• Distribution
• Asynchrony
• Replication
• …
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‣ Many components, many sources of nondeterminism

They are difficult to test!
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• 𝑑 = 2 ⟨𝑒&, ⟩𝑒) e.g. order violation

• 𝑑 = 3 ⟨𝑒&, ⟩𝑒), 𝑒+ e.g. atomicity violation

• 𝑑 = 𝑛 ⟨𝑒&, ⟩… , 𝑒. more complicated bugs
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Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16) 

Distributed systems bugs are deep!
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Systematic testing - infeasible Random testing (e.g. PCTCP, Jepsen)

Guided testing (e.g. Molly)
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Needs reduction techniques (e.g. SAMC, FlyMC)

How to detect bugs?
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Modeling languages

Programming languages

Model checking

Systematic testing

state space exploration

state space exploration

abstraction adaptation

(applicable to real-word size software)

Combining Model Checking and Testing
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• Explore the state space systematically 
• Run time scheduler to exercise all possible sequences of events 
• Ability to inject crash/reboot events

• Infeasible to test all executions
• State space explosion problem
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Systematic Testing of Distributed Systems
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• Each node operates on its own local state
• The messages to different nodes are commutative
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A B C D G H

E F

‣ How many different executions does the system have?

A Simple Example
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• Avoids redundantly exploring parts of the state space reachable by different 
executions
• Exploits the commutativity of concurrent transitions
• Based on the dependency relation between the transitions of a system

• Dynamic Partial Order Reduction (DPOR) dynamically tracks interactions 
between transactions
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s1 s2

t1 t2

t2 t1

Partial Order Reduction
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Based on the dependency relation between the events:
• A distributed system event: 𝑒 = 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑠𝑒𝑛𝑑𝑒𝑟,𝑚𝑒𝑠𝑠𝑎𝑔𝑒
• An execution: 𝐸 = 𝑒&, 𝑒), . . . , 𝑒.
• Dependence relation: 𝑒&, 𝑒) ∈ 𝐷iff 𝑒&. receiver = 𝑒). 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

• Two executions 𝐸& and 𝐸) are equivalent iff:
• 𝑆𝑒𝑡 𝐸& = 𝑆𝑒𝑡(𝐸))

• For every 𝑒&, 𝑒) ∈ 𝐷: 𝑒& →
FG 𝑒) iff  𝑒& →

FH 𝑒)
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Partial Order Reduction for Distributed Systems
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A B C D G H

E F

Partial Order Reduction for Distributed Systems

D partitions the state space 
into equivalence classes w.r.t≡ 𝐷 A B C D E F G H  ≡ 𝐷 A B C E F G H D

A B C D E F G H  ≢ 𝐷 B A C D E F G H
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From “SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems OSDI’14”

A Complex Example
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From “SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems OSDI’14”

Too many events, 
multiple crashes and reboots!

A Complex Example
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SAMC-Semantic Aware Model Checking1

Existing approaches for reduction is not sufficient
• Classical DPOR 
• Black box, exploits general properties of distributed systems

• SAMC
• White-box, exploits system specific semantic information

• Use system semantics for state space reduction
• Local Message Independence
• Crash Message Independence
• Crash Recovery Symmetry
• Reboot Synchronization Symmetry
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1 SAMC: semantic-aware model checking for fast discovery of deep bugs in cloud systems, OSDI’14
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Local Message Independence

• Some messages sent to a node are concurrent
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A B C D

Black box DPOR
ABCD
ABDC
ACBD

…
4! reorderings

A B C D

White box DPOR
ABCD
ABDC
BACD
BADC

4 reorderings

(with message processing semantics)
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Discard:
if(pd(m, ls))

noop;
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Local Message Independence

Constant:
if(pc(m, ls))

ls = Const;

Increment:
if(pi(m, ls))

ls ++;

Modify:
if(pm(m, ls))

ls = modify(m, ls)

• m1 is independent of m2 if pd is true for any of m1 and m2
• m1 is independent of m2 if pi (or pc) is true on both m1 and m2
• m1 and m2 are dependent if pm is true on m1 and pd is not true on m2

(they modify the state in unique ways)
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• Some messages and node crashes are concurrent

• E.g. Crash of a node N is concurrent with messages A, B, C, D
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White box DPOR
ABCDX

Black box DPOR
ABCDX
ABCXD
ABXCD
AXBCD
XABCD

Crash Message Independence

Global impact:
if(pg(X, ls))

modify(ls);

sendMsg();

Local impact:
if(pg(X, ls))

modify(ls);
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• Guide the model checker with the crash decisions

• Some crashes lead to symmetrical recovery behaviors
• In a 4-node system with FFFL, crashing the first and the second node may 

lead to the same behavior
• Two recovery actions are symmetrical if they produce the same message and 

update the local state in the same way

• Needs to extract recovery logic
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Crash Recovery Symmetry
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• Guide the model checker with the reboot decisions

• A reboot will not lead to a new scenario if the current state of the 
system is similar to the state it crashed

• Needs to extract reboot synchronization predicates and corresponding 
actions
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Reboot Synchronization Symmetry
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Partial Order Reduction for Distributed Systems

Semantic information provides coarser equivalence of executions:
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Systematic testing with pruning

Equivalence w.r.t black box 𝐷

Semantic info

Equivalence w.r.t white box 𝐷
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Summary
• Systematic testing suffers from state space explosion problem
• Partial order reduction techniques reduce the state space
• Generic notion of dependency – black box
• Semantic knowledge for fine grained dependency – white box
• Used for testing on Cassandra, Zookeeper, Hadoop
• Reduction ratio between 37x to 166x in model checking Zookeeper

• Research Questions:
• What other semantic knowledge can scale MC distributed systems?
• How to extract the system specific white-box information?

• What other techniques can be used for an efficient systematic testing?
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