
Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Systematic Testing of Distributed Systems

Burcu Kulahcioglu Ozkan

TU Kaiserslautern

Summer Term 2019

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Distributed systems are prone to bugs!

• Distribution
• Asynchrony
• Replication
• …

2

‣ Many components, many sources of nondeterminism

They are difficult to test!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• 𝑑 = 2 ⟨𝑒&, ⟩𝑒) e.g. order violation

• 𝑑 = 3 ⟨𝑒&, ⟩𝑒), 𝑒+ e.g. atomicity violation

• 𝑑 = 𝑛 ⟨𝑒&, ⟩… , 𝑒. more complicated bugs

3

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)

Distributed systems bugs are deep!

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 4

.
.

.

.
.

.
.

.

 .

Systematic testing - infeasible Random testing (e.g. PCTCP, Jepsen)

Guided testing (e.g. Molly)

.
.

.
.

.

 .

Needs reduction techniques (e.g. SAMC, FlyMC)

How to detect bugs?

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 5

Modeling languages

Programming languages

Model checking

Systematic testing

state space exploration

state space exploration

abstraction adaptation

(applicable to real-word size software)

Combining Model Checking and Testing

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Explore the state space systematically
• Run time scheduler to exercise all possible sequences of events
• Ability to inject crash/reboot events

• Infeasible to test all executions
• State space explosion problem

6

.
.

.

Systematic Testing of Distributed Systems

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Each node operates on its own local state
• The messages to different nodes are commutative

7

A B C D G H

E F

‣ How many different executions does the system have?

A Simple Example

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Avoids redundantly exploring parts of the state space reachable by different
executions
• Exploits the commutativity of concurrent transitions
• Based on the dependency relation between the transitions of a system

• Dynamic Partial Order Reduction (DPOR) dynamically tracks interactions
between transactions

8

s1 s2

t1 t2

t2 t1

Partial Order Reduction

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Based on the dependency relation between the events:
• A distributed system event: 𝑒 = 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, 𝑠𝑒𝑛𝑑𝑒𝑟,𝑚𝑒𝑠𝑠𝑎𝑔𝑒
• An execution: 𝐸 = 𝑒&, 𝑒), . . . , 𝑒.
• Dependence relation: 𝑒&, 𝑒) ∈ 𝐷iff 𝑒&. receiver = 𝑒). 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

• Two executions 𝐸& and 𝐸) are equivalent iff:
• 𝑆𝑒𝑡 𝐸& = 𝑆𝑒𝑡(𝐸))

• For every 𝑒&, 𝑒) ∈ 𝐷: 𝑒& →
FG 𝑒) iff 𝑒& →

FH 𝑒)

9

Partial Order Reduction for Distributed Systems

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 10

A B C D G H

E F

Partial Order Reduction for Distributed Systems

D partitions the state space
into equivalence classes w.r.t≡ 𝐷 A B C D E F G H ≡ 𝐷 A B C E F G H D

A B C D E F G H ≢ 𝐷 B A C D E F G H

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 11

From “SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems OSDI’14”

A Complex Example

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan 12

From “SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems OSDI’14”

Too many events,
multiple crashes and reboots!

A Complex Example

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

SAMC-Semantic Aware Model Checking1

Existing approaches for reduction is not sufficient
• Classical DPOR
• Black box, exploits general properties of distributed systems

• SAMC
• White-box, exploits system specific semantic information

• Use system semantics for state space reduction
• Local Message Independence
• Crash Message Independence
• Crash Recovery Symmetry
• Reboot Synchronization Symmetry

13

1 SAMC: semantic-aware model checking for fast discovery of deep bugs in cloud systems, OSDI’14

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Local Message Independence

• Some messages sent to a node are concurrent

14

A B C D

Black box DPOR
ABCD
ABDC
ACBD

…
4! reorderings

A B C D

White box DPOR
ABCD
ABDC
BACD
BADC

4 reorderings

(with message processing semantics)

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Discard:
if(pd(m, ls))

noop;

15

Local Message Independence

Constant:
if(pc(m, ls))

ls = Const;

Increment:
if(pi(m, ls))

ls ++;

Modify:
if(pm(m, ls))

ls = modify(m, ls)

• m1 is independent of m2 if pd is true for any of m1 and m2
• m1 is independent of m2 if pi (or pc) is true on both m1 and m2
• m1 and m2 are dependent if pm is true on m1 and pd is not true on m2

(they modify the state in unique ways)

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Some messages and node crashes are concurrent

• E.g. Crash of a node N is concurrent with messages A, B, C, D

16

White box DPOR
ABCDX

Black box DPOR
ABCDX
ABCXD
ABXCD
AXBCD
XABCD

Crash Message Independence

Global impact:
if(pg(X, ls))

modify(ls);

sendMsg();

Local impact:
if(pg(X, ls))

modify(ls);

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Guide the model checker with the crash decisions

• Some crashes lead to symmetrical recovery behaviors
• In a 4-node system with FFFL, crashing the first and the second node may

lead to the same behavior
• Two recovery actions are symmetrical if they produce the same message and

update the local state in the same way

• Needs to extract recovery logic

17

Crash Recovery Symmetry

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

• Guide the model checker with the reboot decisions

• A reboot will not lead to a new scenario if the current state of the
system is similar to the state it crashed

• Needs to extract reboot synchronization predicates and corresponding
actions

18

Reboot Synchronization Symmetry

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Partial Order Reduction for Distributed Systems

Semantic information provides coarser equivalence of executions:

19

.
.

.

Systematic testing with pruning

Equivalence w.r.t black box 𝐷

Semantic info

Equivalence w.r.t white box 𝐷

Summer Term 2019Programming Distributed SystemsBurcu Kulahcioglu Ozkan

Summary
• Systematic testing suffers from state space explosion problem
• Partial order reduction techniques reduce the state space
• Generic notion of dependency – black box
• Semantic knowledge for fine grained dependency – white box
• Used for testing on Cassandra, Zookeeper, Hadoop
• Reduction ratio between 37x to 166x in model checking Zookeeper

• Research Questions:
• What other semantic knowledge can scale MC distributed systems?
• How to extract the system specific white-box information?

• What other techniques can be used for an efficient systematic testing?

20

