
Software-Engineering Seminar, Winter 2017/18
LATEX Tutorial

Peter Zeller

AG Softech
FB Informatik

TU Kaiserslautern

LATEX

You write your document in plain text with commands that describe its
structure and meaning.

The LATEX program processes your text and produces PDF.

Idea: Focus on content, let LATEX do the layout.

Use provided style

Avoid manual layout adjustments

Avoid manual line and page breaks

Peter Zeller Software-Engineering Seminar, Winter 2017/18 2/ 32

LATEX

You write your document in plain text with commands that describe its
structure and meaning.

The LATEX program processes your text and produces PDF.

Idea: Focus on content, let LATEX do the layout.

Use provided style

Avoid manual layout adjustments

Avoid manual line and page breaks

Peter Zeller Software-Engineering Seminar, Winter 2017/18 2/ 32

Compiler and editors

Visual Studio Code (LaTeX Workshop extension)

TeXStudio

Kile

TeXlipse

Emacs

Atom

. . .

Demo

Compile often, errors not always useful, focus on first error

Use synctex to jump from PDF to source

Configure a spellchecker for your editor

Online editors like Overleaf or Sharelatex not recommended

Peter Zeller Software-Engineering Seminar, Winter 2017/18 3/ 32

Compiler and editors

Visual Studio Code (LaTeX Workshop extension)

TeXStudio

Kile

TeXlipse

Emacs

Atom

. . .

Demo
Compile often, errors not always useful, focus on first error

Use synctex to jump from PDF to source

Configure a spellchecker for your editor

Online editors like Overleaf or Sharelatex not recommended

Peter Zeller Software-Engineering Seminar, Winter 2017/18 3/ 32

Text, newlines, and paragraphs

LATEX PDF

Linebreaks
and additional spaces are
ignored in the output.

Empty lines separate paragraphs.

Manual linebreaks \\
are possible, but
should be avoided.

Linebreaks and additional spaces
are ignored in the output.

Empty lines separate paragraphs.

Manual linebreaks
are possible, but should be avoided.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 4/ 32

Special symbols

LATEX PDF

Double ‘‘Quotes’’
and single ‘quotes’.

Wrong "quotes".

% a comment

Double “Quotes” and single
‘quotes’.

Wrong ”quotes”.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 5/ 32

Commands

LATEX PDF

Commands start with a backslash,
for example: \textbf bold font.

Curly braces group text, for
example: \textbf{bold font}.

Square brackets for optional
arguments, as in
\lstinline[language=Java]{if (x
<3) throw new Exception()}

Commands start with a backslash,
for example: bold font.

Curly braces group text, for exam-
ple: bold font.

Square brackets for optional argu-
ments, as in if (x<3) throw new

Exception()

Peter Zeller Software-Engineering Seminar, Winter 2017/18 6/ 32

Other special symbols

LATEX PDF

Special symbols can be escaped
with a backslash.

For example: \$ \% \& \# _

Special symbols can be escaped
with a backslash.

For example: $ % & #

Peter Zeller Software-Engineering Seminar, Winter 2017/18 7/ 32

Document structure

-1 \part{...}

0 \chapter{...}

1 \section{...}

2 \subsection{...}

3 \subsubsection{...}

4 \paragraph{...}

5 \subparagraph{...}

\section, \subsection and \paragraph usually enough for papers.

\part and \chapter are only available in report and book document classes.

Add a * to remove numbers, e.g. \section*{...}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 8/ 32

Lists

LATEX PDF

\begin{itemize}
\item Unordered
\item List
\item \dots
\end{itemize}

\begin{enumerate}
\item Numbered
\item list
\item \dots
\end{enumerate}

Unordered

List

. . .

1 Numbered

2 list

3 . . .

Peter Zeller Software-Engineering Seminar, Winter 2017/18 9/ 32

Definition lists

LATEX PDF

\begin{description}
\item[Word A] Word A is \dots
\item[Word B] B is \dots
\end{description}

Word A Word A is . . .

Word B B is . . .

Peter Zeller Software-Engineering Seminar, Winter 2017/18 10/ 32

Tables

\begin{tabular}{lcr}
Place & Food & Price \\
Ausgabe 1 & Rahmbraten & 2.40\texteuro \\
Ausgabe 2 & Tagliatelle & 2.15\texteuro \\
Atrium & Kebab & 3.90\texteuro \\
\end{tabular}

Place Food Price
Ausgabe 1 Rahmbraten 2.40€
Ausgabe 2 Tagliatelle 2.15€
Atrium Kebab 3.90€

Peter Zeller Software-Engineering Seminar, Winter 2017/18 11/ 32

Tables

\begin{tabular}{|l|c|r|}
Place & Food & Price \\ \hline
Ausgabe 1 & Rahmbraten & 2.40\texteuro \\
Ausgabe 2 & Tagliatelle & 2.15\texteuro \\
Atrium & Kebab & 3.90\texteuro \\
\end{tabular}

Place Food Price
Ausgabe 1 Rahmbraten 2.40€
Ausgabe 2 Tagliatelle 2.15€
Atrium Kebab 3.90€

Peter Zeller Software-Engineering Seminar, Winter 2017/18 12/ 32

Code Listings

\begin{lstlisting}
public static void main(String[] args) {

// some comment
System.out.println("Hello World!");

}
\end{lstlisting}

public static void main(String[] args) {
// some comment
System.out.println("Hello World!");

}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 13/ 32

Code Listings

\begin{lstlisting}[language=Java]
public static void main(String[] args) {

// some comment
System.out.println("Hello World!");

}
\end{lstlisting}

public static void main(String[] args) {
// some comment
System.out.println("Hello␣World!");

}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 14/ 32

Code Listings

\begin{lstlisting}[language=Java,morekeywords={out,println}, numbers=
left]
public static void main(String[] args) {

// some comment
System.out.println("Hello World!");

}
\end{lstlisting}

1 public static void main(String[] args) {
2 // some comment
3 System.out.println("Hello␣World!");
4 }

Peter Zeller Software-Engineering Seminar, Winter 2017/18 15/ 32

Figures

public static void main(String[] args) {
// some comment
System.out.println("Hello␣World!");

}

Figure 1: A simple Java program

\begin{figure}
\begin{lstlisting}[language=Java]
public static void main(String[] args) {

// some comment
System.out.println("Hello World!");

}
\end{lstlisting}
\caption{A simple Java program}
\label{fig:java_example}
\end{figure}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 16/ 32

Labels and References

Use the label name to reference Figure \ref{fig:java_example}.

Use the label name to reference Figure 1.

Labels can also be used to reference sections:

\section{Part1}
\label{sec:part1}

\subsection{Details}
\label{sec:part1a}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 17/ 32

Labels and References

Use the label name to reference Figure \ref{fig:java_example}.

Use the label name to reference Figure 1.

Labels can also be used to reference sections:

\section{Part1}
\label{sec:part1}

\subsection{Details}
\label{sec:part1a}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 17/ 32

Images

\includegraphics[width=10cm]{bitcoin.png}

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin price and volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 18/ 32

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Images

\includegraphics[width=10cm]{bitcoin_hd.png}

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin price and volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 19/ 32

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Images

\includegraphics[width=10cm]{bitcoin.pdf}

2010 2011 2012 2013 2014 2015
0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0%

50%

100%

150%

200%

250%

300%

350%

Price Volatility

Source: Ladislav Mecir, https://en.wikipedia.org/wiki/File:Bitcoin price and volatility.svg

Peter Zeller Software-Engineering Seminar, Winter 2017/18 20/ 32

https://en.wikipedia.org/wiki/File:Bitcoin_price_and_volatility.svg

Images

Use images in Figures.

Use vector images (pdf) instead of rasterized images (png, jpg) if possible.

Use your own graphics if possible, otherwise reference source.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 21/ 32

Formulas

Formulas can be used inline
$\sum_{i=1}ˆ\infty {6 \over iˆ2} = \piˆ2$
or in a block:

\[\sum_{i=1}ˆ\infty {6 \over iˆ2} = \piˆ2 \]

Math formulas can be used inline
∑∞

i=1
6
i2 = π2 or in a block:

∞∑
i=1

6

i2
= π2

Peter Zeller Software-Engineering Seminar, Winter 2017/18 22/ 32

Formulas
Use detexify (http://detexify.kirelabs.org/) to find Latex symbols.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 23/ 32

http://detexify.kirelabs.org/

Citations
Add Bibtex entry to references.bib:

@inproceedings{dobedobedo,
author = {Sam Lindley and

Conor McBride and
Craig McLaughlin},

title = {Do be do be do},
booktitle = {Proceedings of the 44th {ACM} {SIGPLAN} Symposium on

Principles of Programming Languages,
{POPL} 2017, Paris, France, January 18-20,
2017},

year = {2017},
url = {http://dl.acm.org/citation.cfm?id=3009897},

}

Reference in Text:

Frank \cite{dobedobedo} is a language with effect handlers but no
separate notion of function: a function is but a special case of a
handler.

Peter Zeller Software-Engineering Seminar, Winter 2017/18 24/ 32

Copy Bibtex from https://dblp.uni-trier.de/ or other sources

Peter Zeller Software-Engineering Seminar, Winter 2017/18 25/ 32

https://dblp.uni-trier.de/

Citing online resources

@misc{discord,
title = {How Discord Stores Billions of Messages},
author = {Stanislav Vishnevskiy},
howpublished = {\url{https://blog.discordapp.com/how-discord-stores-

billions-of-messages-7fa6ec7ee4c7}},
note = {Accessed: 2017-10-12}

}

Peter Zeller Software-Engineering Seminar, Winter 2017/18 26/ 32

Structure

desirable application behavior. For example, the code in Figure 1
demonstrates a simple withdrawal function that checks whether a
user has sufficient funds in their bank account. In Figure 1a, the
code could exhibit anomalous behavior under concurrent execution,
allowing the account to be overdrawn. Moreover, even after adding
transaction logic as in Figure 1b, concurrent execution could elicit
the same behavior under weak isolation.

These latent programming errors represent a potential security
vulnerability, and the threat of systematic exploit is not theoretical:
on March 2nd, 2014, the Flexcoin Bitcoin exchange was subject to
such a concurrency-related attack:

The attacker. . . successfully exploited a flaw in the code
which allows transfers between Flexcoin users. By
sending thousands of simultaneous requests, the at-
tacker was able to “move” coins from one user account
to another until the sending account was overdrawn,
before balances were updated. This was then repeated
through multiple accounts, snowballing the amount,
until the attacker withdrew the coins [1].

As a result of this attack, all Bitcoins stored in the Flexcoin exchange
were stolen, all users lost their stored Bitcoins, and the exchange
was forced to shut down. This type of incident is not isolated; we are
aware of several additional reports of malicious concurrency-related
attacks, largely targeting Bitcoin and cryptocurrency exchanges [51,
55]. As web applications increasingly host valuable and sensitive
data, attacks such as these may even become more common.

In this paper, we investigate the causes, detection, and prevalence
of concurrency-related attacks on database-backed web applications,
which we collectively title ACIDRain attacks.1 We more formally
define ACIDRain attacks, develop an analysis technique for de-
tecting vulnerabilities to ACIDRain attacks, and apply this tech-
nique to a set of self-hosted eCommerce applications, identifying
22 vulnerabilities spanning over 2M websites. All 22 vulnerabilities
manifest under the default isolation guarantees of popular transac-
tional databases including Oracle 12c, and 17 vulnerabilities—due
to incorrect transaction usage—manifest even under the strongest
transactional guarantees offered by these databases.

To begin, we define a threat model for ACIDRain attacks. We
consider attacks that trigger two kinds of anomalies, or behaviors
that could not have arisen in a serial execution. First, if the da-
tabase does not provide the application with serializable isolation
(either because the database is not configured to do so or the da-
tabase does not support serializability), then concurrently-issued
transactions may lead to non-serializable behavior. We call these
races due to database-level isolation level settings level-based isola-
tion anomalies. Second, if the application does not correctly scope,
or encapsulate, its logic using transactions, concurrent requests to
the application may lead to behavior that would not have arisen
sequentially. We call these races due to application-level transaction
specification scoping isolation anomalies. The the impact of each
of these types of anomalies is application-dependent. As a result,
we examine a specific class of applications in this paper: popular
eCommerce platforms, such as OpenCart [7], Spree Commerce [15],
and WooCommerce [16].

We use this threat model to develop a cross-language analysis
methodology to detect potential ACIDRain attacks. Web applica-
tions are written in a variety of languages and using a variety of
1Like acid rain in the Earth’s atmosphere, ACIDRain attacks may be difficult
to detect; an ACIDRain attack manifests in the form of regular API calls
and resulting application and database activity, albeit at elevated levels of
concurrency. This elevated concurrency triggers vulnerabilities resulting
from incorrect use of ACID transactional databases, leading to corrupted
data and/or more serious application compromise (e.g., stolen goods).

programming frameworks (e.g. Ruby on Rails). As a result, an anal-
ysis tool that operates on a per-language basis will have inherently
limited applicability. Instead, we exploit the fact that our target
applications are all web-based and database-backed. We analyze
actual SQL traces (i.e., logs) using a new approach called Abstract
Anomaly Detection (2AD). 2AD efficiently identifies potential level-
based and scope-based anomalies that could arise from concurrently
(re-)executing a set of API calls appearing in a given trace. This
search space is enormous. Therefore, to enable efficient search, we
extend the theory of weak isolation [17] to reason about both API
calls and about re-executions. 2AD uses this theory to construct
an abstract history that can be efficiently checked, representing the
infinite space of concurrent schedules in a finite data structure.

Using 2AD analysis, we perform an audit of 12 popular self-
hosted eCommerce platform applications, several of which are com-
mercially supported, written in four languages using four different
frameworks. We explore three attacks targeting invariants common
to most eCommerce applications: attacks that allow users to steal
items during checkout, to reuse gift cards to receive free items, and
to corrupt store inventory ledgers. Using 2AD, we detect 22 new
ACIDRain attacks. For example, in Magento [6], OpenCart [7], and
Oscar [8], users can buy a single gift card, then spend it an unlimited
number of times by concurrently issuing checkout requests. The
total scope of the vulnerabilities we discover spans approximately
2M websites that use this software today, representing over 50% of
all eCommerce websites (Section 4.2.1).

We subsequently discuss strategies for remediating these attacks
and discuss our experiences reporting these vulnerabilities to de-
velopers, who have confirmed several thus far. We evaluate which
databases provide sufficiently strong isolation guarantees to prevent
these attacks. Of the 22 vulnerabilities, 17 occur due to incorrect
transaction usage and are therefore not preventable without substan-
tial code modification. We investigate common program behavior
among vulnerable and non-vulnerable code paths and present con-
structive strategies for preventing attacks.

The remainder of this paper proceeds as follows. Section 2 defines
ACIDRain attacks. In Section 3, we develop and formally motivate
the 2AD analysis theory. Section 4 describes our experiences detect-
ing and exploiting real vulnerabilities in eCommerce applications.
Section 5 discusses related work, and Section 6 concludes.

2. ACIDRain ATTACKS
In this section, we define ACIDRain attacks more precisely and

describe the threat model we consider in this paper.

Target Environment. We focus on attacks on web applications—
applications that expose functionality to third-parties via program-
matically accessible APIs, both over the Internet and via related
protocols such as HTTP and REST. This applies to every website
on the Internet. Our primary property of interest is that it must be
possible to programmatically trigger API calls.

We are specifically interested in web applications that use databases
to mediate concurrent access to state. A web application that ex-
ecutes requests serially is not subject to the attacks we consider
here; however, concurrent request processing is common among
web servers including Apache and Nginx. We consider transactional
databases that allow users to group their operations into transactions
consisting of ordered sequences of operations [43]. The database in
turn provides varying isolation guarantees regarding the admissible
interleavings of operations across transactions [17].

Attack Definition. We define an ACIDRain attack on a database-
backed web application as an exploit allowing an attacker to elicit
undesirable application behavior by issuing concurrent requests to

6

Peter Zeller Software-Engineering Seminar, Winter 2017/18 27/ 32

Structure

Eventually Consistent Data Store

Replica�Replica� Replican

......x → {wx
� , wx

� }
y → {w y

� , w y
� }.

.

.

w y
�

wx
�

y → {w y
� } x → {wx

� }

...

Session� Session�

.

.

.Session
Order

v�← x . f oo(arg�); �wx
� �

v�← x .bar(arg�); �wx
� �

Figure 1: QUELEA system model.

verify fine-grained application-level consistency properties. The
programmer uses the contract language to axiomatically specify
the set of legal executions allowed over the replicated data type.
Contracts are constructed using primitive consistency relations
such as visibility and session order along with standard logical
and relational operators. A contract enforcement system statically
maps operations over the datatype to a particular consistency level
available on the store, and provably validates the correctness of the
mapping. The paper makes the following contributions:

• We introduce QUELEA, a shallow extension of Haskell that
supports the description and validation of replicated data types
found in an ECDS. Contracts are used to specify fine-grained
application-level consistency properties, and are statically ana-
lyzed to assign the most efficient and sound store consistency
level to the corresponding operation.

• QUELEA supports coordination-free transactions over arbitrary
datatypes. We extend our contract language to express fine-
grained transaction isolation guarantees, and utilize the contract
enforcement system to automatically assign the correct isolation
level for a transaction.

• We provide meta-theory that certifies the soundness of our
contract enforcement system, and ensures that an operation is
only executed if the required conditions on consistency are met.

• We describe an implementation of QUELEA as a transparent
shim layer over Cassandra [17], a well-known general-purpose
data store. Experimental evaluation over a set of real-world
applications, including a Twitter-like micro-blogging site and an
eBay-like auction site illustrates the practicality of our approach.

The rest of the paper is organized as follows. The next section
describes the system model. We describe the challenges in program-
ming under eventual consistency, and introduce QUELEA contracts
as a proposed solution to overcome these issues in § 3. § 4 pro-
vides more details on the contract language, and its mapping to
store consistency levels, along with meta-theory for certifying the
correctness of the mapping. § 5 introduces transaction contracts and
their classification. § 6 describes the implementation of QUELEA on
top of Cassandra. § 7 discusses experimental evaluation. § 8 and 9
present related work and conclusions.

2. System Model
In this section, we describe the system model and introduce the
primitive relations that our contract language is seeded with. Figure 1
presents a schematic diagram of our system model. The distributed
store is composed of a collection of replicas, each of which stores a
set of objects (x, y, . . .). We assume that every object is replicated

at every replica in the store. The state of an object at any replica is
the set of all updates (effects) performed on the object. For example,
the state of x at replica 1 is the set composed of effects wx1 and wx2 .

Each object is associated with a set of operations. The clients
interact with the store by invoking operations on objects. The
sequence of operations invoked by a particular client on the store
is called a session. The data store is typically accessed by a large
number of clients (and hence sessions) concurrently. Importantly,
the clients are oblivious to which replica an operation is applied
to; the data store may choose to route the operation to any replica
in order to minimize latency, balance load, etc. For example, the
operations foo and bar invoked by the same session on the same
object, might end up being applied to different replicas because
replica 1 (to which foo was applied) might be unreachable when the
client invokes bar.

When foo is invoked on a object x with arguments arg1 at
replica 1, it simply reduces over the current set of effects at that
replica on that object (wx1 and wx2), produces a result v1 that is
sent back to the client, and emits a single new effect wx4 that is
appended to the state of x at replica 1. Thus, every operation is
evaluated over a snapshot of the state of the object on which it is
invoked. In this case, the effectswx1 andwx2 are visible towx4 , written
logically as vis(wx1 , w

x
4) ∧ vis(wx2 , w

x
4), where vis is the visibility

relation between effects. Visibility is an irreflexive and asymmetric
relation, and only relates effects produced by operations on the same
object. Executing a read-only operation is similar except that no
new effects are produced. The effect added to a particular replica
is asynchronously sent to other replicas, and eventually merged
into all other replicas. Observe that this model does not assume
a particular resolution strategy for concurrent conflicting updates,
and instead preserves every update. Update conflicts are resolved
when an operation reduces over the set of effects on an object at a
particular replica.

Two effects wx4 and wx5 that arise from the same session are said
to be in session order (written logically as so(wx4 , w

x
5)). Session

order is an irreflexive, transitive relation. The effects wx4 and wx5
arising from operations applied to the same object x are said to be
under the same object relation, written sameobj(wx4 , w

x
5). Finally,

we can associate every effect with the operation that generated
the effect with the help of a relation oper. In the current example,
oper(wx4 , foo) and oper(wx5 , bar) hold. For simplicity, we assume
all operation names across all object are distinct.

This model admits all the inconsistencies associated with even-
tual consistency. The goal of this work is to identify the precise
consistency level for each operation such that application-level con-
straints are not violated. In the next section, we will concretely
describe the challenges associated with constructing a consistent
bank account on top of an ECDS. Subsequently, we will illustrate
how our contract and specification language, armed with the primi-
tive relations vis, so, sameobj and oper, mitigates these challenges.

3. Motivation
Consider how we might implement a highly available bank account
on top of an ECDS, with the integrity constraint that the balance
must be non-negative. We begin by implementing a bank account
replicated data type (RDT) in QUELEA, and then describe the
mechanisms to obtain the desired correctness guarantees.

3.1 RDT Specification
A key novelty in QUELEA is that it allows the addition of new
RDTs to the store, which obviates the need for coercing application
logic to utilize store-provided data types. In addition, QUELEA
treats the convergence semantics (i.e., how conflicting updates
are resolved) of the data type separately from its consistency
properties (i.e., when updates become visible). This separation of

414

Peter Zeller Software-Engineering Seminar, Winter 2017/18 28/ 32

Structure

Eventually Consistent Data Store

Replica�Replica� Replican

......x → {wx
� , wx

� }
y → {w y

� , w y
� }.

.

.

w y
�

wx
�

y → {w y
� } x → {wx

� }

...

Session� Session�

.

.

.Session
Order

v�← x . f oo(arg�); �wx
� �

v�← x .bar(arg�); �wx
� �

Figure 1: QUELEA system model.

verify fine-grained application-level consistency properties. The
programmer uses the contract language to axiomatically specify
the set of legal executions allowed over the replicated data type.
Contracts are constructed using primitive consistency relations
such as visibility and session order along with standard logical
and relational operators. A contract enforcement system statically
maps operations over the datatype to a particular consistency level
available on the store, and provably validates the correctness of the
mapping. The paper makes the following contributions:

• We introduce QUELEA, a shallow extension of Haskell that
supports the description and validation of replicated data types
found in an ECDS. Contracts are used to specify fine-grained
application-level consistency properties, and are statically ana-
lyzed to assign the most efficient and sound store consistency
level to the corresponding operation.

• QUELEA supports coordination-free transactions over arbitrary
datatypes. We extend our contract language to express fine-
grained transaction isolation guarantees, and utilize the contract
enforcement system to automatically assign the correct isolation
level for a transaction.

• We provide meta-theory that certifies the soundness of our
contract enforcement system, and ensures that an operation is
only executed if the required conditions on consistency are met.

• We describe an implementation of QUELEA as a transparent
shim layer over Cassandra [17], a well-known general-purpose
data store. Experimental evaluation over a set of real-world
applications, including a Twitter-like micro-blogging site and an
eBay-like auction site illustrates the practicality of our approach.

The rest of the paper is organized as follows. The next section
describes the system model. We describe the challenges in program-
ming under eventual consistency, and introduce QUELEA contracts
as a proposed solution to overcome these issues in § 3. § 4 pro-
vides more details on the contract language, and its mapping to
store consistency levels, along with meta-theory for certifying the
correctness of the mapping. § 5 introduces transaction contracts and
their classification. § 6 describes the implementation of QUELEA on
top of Cassandra. § 7 discusses experimental evaluation. § 8 and 9
present related work and conclusions.

2. System Model
In this section, we describe the system model and introduce the
primitive relations that our contract language is seeded with. Figure 1
presents a schematic diagram of our system model. The distributed
store is composed of a collection of replicas, each of which stores a
set of objects (x, y, . . .). We assume that every object is replicated

at every replica in the store. The state of an object at any replica is
the set of all updates (effects) performed on the object. For example,
the state of x at replica 1 is the set composed of effects wx1 and wx2 .

Each object is associated with a set of operations. The clients
interact with the store by invoking operations on objects. The
sequence of operations invoked by a particular client on the store
is called a session. The data store is typically accessed by a large
number of clients (and hence sessions) concurrently. Importantly,
the clients are oblivious to which replica an operation is applied
to; the data store may choose to route the operation to any replica
in order to minimize latency, balance load, etc. For example, the
operations foo and bar invoked by the same session on the same
object, might end up being applied to different replicas because
replica 1 (to which foo was applied) might be unreachable when the
client invokes bar.

When foo is invoked on a object x with arguments arg1 at
replica 1, it simply reduces over the current set of effects at that
replica on that object (wx1 and wx2), produces a result v1 that is
sent back to the client, and emits a single new effect wx4 that is
appended to the state of x at replica 1. Thus, every operation is
evaluated over a snapshot of the state of the object on which it is
invoked. In this case, the effectswx1 andwx2 are visible towx4 , written
logically as vis(wx1 , w

x
4) ∧ vis(wx2 , w

x
4), where vis is the visibility

relation between effects. Visibility is an irreflexive and asymmetric
relation, and only relates effects produced by operations on the same
object. Executing a read-only operation is similar except that no
new effects are produced. The effect added to a particular replica
is asynchronously sent to other replicas, and eventually merged
into all other replicas. Observe that this model does not assume
a particular resolution strategy for concurrent conflicting updates,
and instead preserves every update. Update conflicts are resolved
when an operation reduces over the set of effects on an object at a
particular replica.

Two effects wx4 and wx5 that arise from the same session are said
to be in session order (written logically as so(wx4 , w

x
5)). Session

order is an irreflexive, transitive relation. The effects wx4 and wx5
arising from operations applied to the same object x are said to be
under the same object relation, written sameobj(wx4 , w

x
5). Finally,

we can associate every effect with the operation that generated
the effect with the help of a relation oper. In the current example,
oper(wx4 , foo) and oper(wx5 , bar) hold. For simplicity, we assume
all operation names across all object are distinct.

This model admits all the inconsistencies associated with even-
tual consistency. The goal of this work is to identify the precise
consistency level for each operation such that application-level con-
straints are not violated. In the next section, we will concretely
describe the challenges associated with constructing a consistent
bank account on top of an ECDS. Subsequently, we will illustrate
how our contract and specification language, armed with the primi-
tive relations vis, so, sameobj and oper, mitigates these challenges.

3. Motivation
Consider how we might implement a highly available bank account
on top of an ECDS, with the integrity constraint that the balance
must be non-negative. We begin by implementing a bank account
replicated data type (RDT) in QUELEA, and then describe the
mechanisms to obtain the desired correctness guarantees.

3.1 RDT Specification
A key novelty in QUELEA is that it allows the addition of new
RDTs to the store, which obviates the need for coercing application
logic to utilize store-provided data types. In addition, QUELEA
treats the convergence semantics (i.e., how conflicting updates
are resolved) of the data type separately from its consistency
properties (i.e., when updates become visible). This separation of

414

Peter Zeller Software-Engineering Seminar, Winter 2017/18 29/ 32

Sentence and Paragraph length

trigger non-serializable access to database-managed state. There
are several salient characteristics of this formulation. First, we are
interested in errors arising from access to database-managed state;
we do not consider vulnerabilities that may arise due to access to
state that is unknown to the database (e.g., a local file). Furthermore,
we are interested in errors arising from concurrent access; we do
not consider vulnerabilities that may arise during sequential access
(e.g., failure to check permissions). Finally, the severity of an attack
is application-specific; some concurrent behaviors may be benign,
while others may be catastrophic. These characteristics shaped our
problem formulation below. An application is vulnerable to an
ACIDRain attack if two conditions are met:

C1: Anomalies possible. Under concurrent API access, the appli-
cation may exhibit behaviors (i.e., anomalies) that could not have
arisen under a serial execution.

A concurrency-related attack arises in the presence of behaviors
that could not have occurred under a serial execution. These be-
haviors are effectively race conditions across concurrent operations,
or, in the parlance of transaction processing, anomalies [17]. We
consider two kinds of anomalies:

First, a transaction issued by a web application may exhibit non-
serializable behavior during concurrent API calls. That is, while
the gold standard of transaction isolation (serializable isolation)
guarantees equivalence to some serial execution of transactions, not
all databases will enforce serializability. Some databases do not
provide serializability as an option at all, while others allow appli-
cations to select a weaker isolation mode [17, 19]. Under weaker
isolation levels, transactions are subject to an array of behaviors that
cannot occur under serial execution, the exact set of which depends
on the particular isolation level and database [17]. We call these
conventional isolation anomalies level-based isolation anomalies
as they arise due to the database executing under non-serializable
isolation levels.

Second, independent of the isolation level used, the transaction
programming model requires the application to correctly encap-
sulate its logic within transactions. In the absence of explicit
BEGIN TRANSACTION and COMMIT/ABORT commands, by default,
many databases such as MySQL and PostgreSQL automatically
execute each SQL operation as a separate transaction. As a result,
if a web application performs multiple database operations with-
out using transactions while servicing a single API request, then
concurrent API requests may result in behavior that could not have
arisen during a serial execution of API calls. We call these isolation
anomalies arising from a lack of transactional encapsulation scope-
based isolation anomalies. In this paper, we consider scoping at the
level of individual API calls.

Given a set of isolation anomalies, we must determine whether
any of these anomalies result in significant application behavior:

C2: Sensitive invariants. The anomalies arising from concurrent
access lead to violations of application invariants.

In general, per Kung and Papadimitriou [45], every anomaly is
problematic for some application; however, for a given application,
is a given anomaly problematic? Again borrowing from the classical
transaction processing literature, we capture key application proper-
ties via invariants, or logical predicates capturing an application’s
consistency criteria [34]. For example, an application might have
an invariant that user IDs within a database are unique. Another
application might specify that total revenue equals the sum of total
orders placed. Each invariant is susceptible to violation under a
particular set of anomalies.

SELECT stock FROM
product WHERE
item_id=2; 2 SELECT
amt FROM cart_items
WHERE cart_id=14 AND
item_id=2; INSERT INTO

1: PUT /api/add
2: GET /api/total
3: PUT /api/checkout
1: PUT /api/add
3: PUT /api/add

1: PUT /api/add
3: PUT /api/checkout
2: PUT /api/add

!"# 6. ACIDRain attack (§4)

3. Abstract history
generation

(§3.1.2)

2. SQL logging
(§3.1.1)

5. Witness refinement
(§3.1.4) 4. Witness generation

(§3.1.3)

1. Public API calls

Transactional
Database

Application
API
Server

Figure 2: 2AD workflow to discover ACIDRain attacks.

To detect an application’s vulnerability to ACIDRain attacks, we
must identify potential anomalies, then determine whether applica-
tion invariants are susceptible to the anomalies. Towards the former
task, in the next section, we present a cross-platform methodology
(based on analysis of traces of live database activity) that automati-
cally identifies potential isolation anomalies. Determining invariants
is more complicated, requiring either user interaction, invariant min-
ing, or program analysis [32, 33]. As a result, in this paper we
focus on a specific, concrete set of invariants found in eCommerce
applications and examine a set of popular eCommerce applications
to determine their susceptibility to attacks on these key invariants.

Threat model. We assume that an attacker can only access the
web application via concurrent requests against publicly-accessible
APIs (e.g., HTTP, REST). That is, to perform an ACIDRain attack,
the attacker does not require access to the application server, data-
base server, execution environment, or logs. Our proposed analysis
techniques (Section 3) use full knowledge of the database schema
and SQL logs, but, once identified, an attacker can exploit the vul-
nerabilities we consider here using only programmatic APIs.2 This
threat model applies to most Internet sites today.

3. 2AD: DETECTING ANOMALIES
ACIDRain attacks stem from anomalies that occur during con-

current execution. Detecting these anomalies is challenging. Many
potential anomalies are never triggered under normal operation due
to limited concurrency, rendering simple observation ineffective.
We could use static analysis tools [50] to analyze an application’s
susceptibility to attacks. However, web applications are written
using a variety of frameworks and languages. As a result, static
analysis tools would necessarily have limited applicability.

To address these challenges, we developed a new, cross-platform
methodology for detecting potential level-based and scope-based
anomalies in web applications by analyzing logs of typical database
activity. We call this approach Abstract Anomaly Detection (2AD).
Figure 2 shows an overview of the 2AD workflow.

Overview. The core idea behind 2AD is to execute API calls
against a live application and database to generate a (possibly se-
quential) trace of database activity, then analyze the trace for po-
tential anomalies that could arise under concurrent execution. This
approach leverages the facts that our target applications all i.) expose
API endpoints (e.g., via HTTP) that can be triggered programmati-

2That is, to efficiently identify vulnerabilities, our analysis makes use of
non-public information in the form of database logs (e.g. SQL traces) and
database schemas. However, the vulnerabilities themselves can be exploited
without this private knowledge.

7Peter Zeller Software-Engineering Seminar, Winter 2017/18 30/ 32

Linking sections

Performing refinement of this type requires knowledge of the
isolation level at which the application will be run, as well as data-
base schema information. The schema information allows 2AD to
distinguish reads on unique keys from predicate reads (as the two
are treated differently under RR and SI).

2.) Application-Level Refinement. We can also perform witness
refinement given information about the application and execution
environment. For example, if we know that the application is de-
ployed in an environment that limits the number of concurrent API
requests to N (e.g., due to web server configuration such as process
pool size), we can ensure that cycles in 2AD witnesses span at most
N API calls. In addition, 2AD’s abstract histories are value-agnostic
and do not account for control flow within a program; in effect,
2AD’s abstract history construction process assumes that each vari-
able read and written can assume arbitrary values. However, there
are often dependencies (e.g., y = x+ 1) between the values that
variables assume. In general, analyzing and encoding all program
logic into the 2AD refinement step is highly challenging, and, in the
limit, requires static analysis of the source program.

In our experimental study, it was faster to attempt to trigger a
reported anomaly and then find the associated program logic prevent-
ing the vulnerability than to preemptively add refinements. For the
web applications we seek here—many of which have simple Create-
Read-Update-Destroy (CRUD) semantics—complex application-
level refinement was not necessary to detect our target anomalies.

3.2 2AD Overview and Discussion
Benefits. In the parlance of programming languages, 2AD is a
dynamic analysis [50], in that it uses traces from live applications
as the basis of analysis. This is a natural fit for database-backed
applications: it is a simple engineering exercise to collect query
logs, and a relatively straightforward task to correlate log entries
with API calls for many of the frameworks we study. Database
schema information is similarly easy to collect. Although we have
performed our analyses in a test environment (Section 4.2.1), 2AD
is amenable to execution over production traces as well.

2AD is both language agnostic—allowing it to analyze many
different applications, and database agnostic—requiring only that
the database allow for command logging and support a SQL-like
query language. This has proved useful in practice (Section 4).

Soundness and Completeness. As discussed in Section 3.1.3,
2AD is complete with respect to the trace. 2AD is as sound as its
refinements; it will only report false positives based on isolation or
application information it does not know about. As described in
Section 4.2.5, a basic 2AD implementation was sufficiently sound
to assist in finding vulnerabilities in real applications.

Limitations. 2AD analysis has several fundamental limitations.
As 2AD only operates over database logs, it does not account for
any program logic that enforces serializability or expansions un-
achievable due to constraints on values. As a result, 2AD may result
in false positives; for example, a developer could use a global vari-
able to lock a critical section of code instead of wrapping it in a
transaction. To avoid this false positive, we would have to encode
this information during trace refinement (e.g., via static analysis).

Moreover, 2AD analysis is only as thorough as the provided traces.
If a given API call is not in the input trace, 2AD cannot check for
anomalies involving the call. 2AD does not account for program
behavior such as internal control flow that is not observable from
traces. Thus, 2AD is well-suited to finding latent errors in common-
case application behavior, but it will miss anomalies corresponding
to rare or exceptional behavior not found in input logs.

In addition, 2AD only finds anomalies, not vulnerabilities. It is
up to the programmer or an additional tool to ascertain whether a
given anomaly may result in an ACIDRain attack. We discuss this
process at length in the next section.

Extensions. There are a number of promising extensions to 2AD
that we believe can capture more sophisticated transaction usage
patterns. For example, under mixed isolation modes (e.g., one
transaction running at Read Committed and another at Snapshot
Isolation), we can annotate transaction nodes with allowable isola-
tion guarantees, then propagate these labels during trace refinement
(e.g., a transaction allowed to execute in SI but not RC will disallow
Lost Update phenomena). In addition, by adding “sub-transaction”
nodes (similar to nesting transaction nodes inside of API nodes) and
modifying the detection procedure, we can extend 2AD to nested
transactional (and, respectively, nested API call) models.

Summary. 2AD is a cross-language dynamic analysis that uses
database traces to search for potential level and scoping anomalies
under concurrent execution. Our choice to focus on database traces
was motivated by our desire for a portable, lightweight tool that can
analyze database-backed applications written in arbitrary languages.
The decision to focus on database-level activity also allowed us
to adapt decades of theory on weak isolation in detecting anoma-
lies. Developing automated techniques for incorporating additional
knowledge of application structure into trace refinement will allow
more fine-grained analysis and is a worthwhile area for future work.
However, despite its limitations, 2AD has proven a useful tool in
analyzing real applications—the subject of the next section.

4. ACIDRain IN THE WILD
Having described how to use database traces to identify possible

anomalies, in this section we describe how to use these this approach
to detect vulnerabilities and subsequently perform ACIDRain at-
tacks. We apply a prototype 2AD analysis tool to a suite of 12
eCommerce applications, identifying 22 new ACIDRain attacks.
Section 4.1 describes how to produce vulnerabilities from anoma-
lies, and Section 4.2 details our experience finding vulnerabilities in
self-hosted eCommerce applications.

4.1 From Anomalies to Vulnerabilities
Isolation guarantees are a means towards protecting application

integrity, or invariants over data. Provided transactions (resp. API
calls) maintain application invariants in a serial execution, a serial-
izable execution will also preserve those invariants. However, an
anomalous execution could violate invariants and corrupt application
state. When does this corruption actually occur?

For a given anomaly, there exists some application for which the
anomaly violates an invariant [45]. Intuitively, if anomaly a occurs
in a history H, we can create a new application whose transactions
are the same as those in H and whose sole invariant is that “anomaly
a never occurs.” However, for a given application, the anomaly may
or may not influence the application invariants. Thus, to use 2AD in
an ACIDRain attack, we must establish a correspondence between
potential anomalies and invariant violations for a given applica-
tion. This is challenging to do in general: for example, describing
all program invariants is notoriously difficult and burdensome for
programmers [33].

Shifting from the theoretical to the practical, identifying security-
related invariants is less onerous than it may immediately seem. An
attacker will likely target particular data records of value such as
bank account balances, store inventory, tax records, and/or access
control policies. Therefore, a security officer’s role is to identify
and ensure adequate protection of these critical assets. Thus, 2AD’s

11

Peter Zeller Software-Engineering Seminar, Winter 2017/18 31/ 32

Use examples

ACIDRain: Concurrency-Related Attacks on
Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

ABSTRACT
In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and
deployed on over 2M websites. We identify and verify 22 critical
ACIDRain attacks that allow attackers to corrupt store inventory,
over-spend gift cards, and steal inventory.

1. INTRODUCTION
For decades, database systems have been tasked with maintaining

application integrity despite concurrent access to shared state [39].
The serializable transaction concept dictates that, if programmers
correctly group their application operations into transactions, appli-
cation integrity will be preserved [34]. This concept has formed the
cornerstone of decades of database research and design and has led
to at least one Turing award [2, 40].

In practice, the picture is less clear-cut. Some databases, in-
cluding Oracle’s flagship offering and SAP HANA, do not offer
serializability as an option at all. Other databases allow applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064037

1 def withdraw(amt, user_id): (a)
2 bal = readBalance(user_id)
3 if (bal >= amt):
4 writeBalance(bal − amt, user_id)

1 def withdraw(amt, user_id): (b)
2 beginTxn()
3 bal = readBalance(user_id)
4 if (bal >= amt):
5 writeBalance(bal − amt, user_id)
6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100≥ $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SELECT FOR UPDATE is used. While this scenario closely re-
sembles textbook examples of improper transaction use, in this
paper, we show that widely-deployed eCommerce applications
are similarly vulnerable to such ACIDRain attacks, allowing
corruption of application state and theft of assets.

to configure the database isolation level but often default to non-
serializable levels [17, 19] that may corrupt application state [45].
Moreover, we are unaware of any systematic study that examines
whether programmers correctly utilize transactions.

For many applications, this state of affairs is apparently satisfac-
tory. That is, some applications do not require serializable transac-
tions and are resilient to concurrency-related anomalies [18, 26, 48].
More prevalently, many applications do not experience concurrency-
related data corruption because their typical workloads are not highly
concurrent [21]. For example, for many businesses, even a few trans-
actions per second may represent enormous sales volume.

However, the rise of the web-facing interface (i.e., API) leads
to the possibility of increased concurrency—and the deliberate ex-
ploitation of concurrency-related errors. Specifically, given a public
API, a third party can programmatically trigger database-backed
behavior at a much higher rate than normal. This highly concur-
rent workload can trigger latent programming errors resulting from
incorrect transaction usage and/or incorrect use of weak isolation
levels. Subsequently, a determined adversary can systematically
exploit these errors, both to induce data corruption and induce un-

5

Peter Zeller Software-Engineering Seminar, Winter 2017/18 32/ 32

