
Dr. Annette Bieniusa

Albert Schimpf, M. Sc.

TU Kaiserslautern
Fachbereich Informatik

AG Programmiersprachen

Exercise 2: Programming Distributed Systems

(Summer 2020)

Submission

• You need a team and a Gitlab repository for this exercise sheet

• In your Git repository, create a branch for this exercise sheet (for example with git

checkout -b ex2)

• Create a folder named “ex2” in your repository and add your solutions to this folder.

• If you want to get feedback on your solution, create a merge request in Gitlab and assign
Albert Schimpf as assignee.

• Test your submission with the provided test cases. Feel free to add more tests, but do
not change the existing test cases.

1 Tool Setup

Follow the instructions at https://pl.cs.uni-kl.de/homepage/de/teaching/ss20/progdist/
software.html to install the required software for the exercises.

2 Erlang Basics

Create a new Rebar project: Open a terminal and navigate to the folder, where you want to
create the project. Then run “rebar3 new app ex2”. This will create a new application in the
folder “ex2”.

2.1 The Shell

To open a shell in your project, navigate your project folder and run “rebar3 shell”. You can
use the shell to evaluate Erlang expressions, for example:

1> 7*6.

42

2> hd([5,4,6]).

5

You can bind the result of expressions to variables. As variables can only be assigned once,
you can use f/1 command to remove a binding in the shell or the f/0 command to remove all
current bindings.

3> X = 5.

5

4> Y = X + 1.

6

5> X = 3.

** exception error: no match of right hand side value 3

6> f(X).

ok

7> X = 3.

3

The shell is useful to experiment with code you have written. To try this feature, create a
new file named “warmup.erl” in your projects src-folder. Then add the following content to the
file:

https://pl.cs.uni-kl.de/homepage/de/teaching/ss20/progdist/software.html
https://pl.cs.uni-kl.de/homepage/de/teaching/ss20/progdist/software.html

1 -module(warmup).

2 -export([add/2]).

3 add(X,Y) -> X + Y.

Now you can use the command r3:do(compile). to load the new code into your shell. As the
function is exported from module warmup, you can now call the function from the shell to see
that it can correctly add 2 numbers:

8> r3:do(compile).

Verifying dependencies ...

Compiling ex2

ok

9> warmup:add(4,3).

7

2.2 Testing

Download the file ex2_tests.erl from the course material and put it into a folder named test

into your project. This file contains the test cases which you can use to test your solutions for
this exercise. You can run them from the terminal with the command rebar3 eunit. The results
are printed on the terminal.

You can also load the tests in an interactive shell by starting the shell with the test profile:

rebar3 as test shell

Then you can directly call the test functions from the test module or use the generated test

function to run all tests in the module:

1> ex2_tests:maximum_test ().

ok

2> ex2_tests:test().

All 10 tests passed.

ok

2.3 Numbers, Lists, and Tuples

Implement the functions described below in the module named warmup. Use the provided test
suite to test your implementation. Avoid using functions from the standard library and try to
implement your own version of the functionality.

a) Write a function maximum/2, which takes two numbers and returns the maximum of the two.
Do not use the built-in max function. Hint: You can use the if-expression, case-expression
or guards.

> warmup:maximum(3, 7).

7

> warmup:maximum(5, 4).

5

b) Write a function list_max/1, which takes a nonempty list of numbers and computes the
maximal element in the list. Do not use the built-in function lists:max. Use recursion to
implement the function.

> warmup:list_max([4,7,5,2]).

7

c) Write a function sorted/1, which takes a list of numbers and checks, whether it is sorted in
ascending order.

> warmup:sorted([4,7,5,2]).

false

> warmup:sorted([2,4,5,7]).

true

d) Write a function swap/1, which takes a pair and returns a pair where the two components
are swapped.

> warmup:swap({ok, 100}).

{100, ok}

e) Write a function find/2, which takes a key and a list of key-value pairs. The function should
return {ok, X}, if X is the value of the first pair in the list that has the given key. If no entry
with the given key exists, the function should return error.

> warmup:find(d, [{c, 5}, {z, 7}, {d, 3}, {a, 1}]).

{ok , 3}

> warmup:find(x, [{c, 5}, {z, 7}, {d, 3}, {a, 1}]).

error

f) Write a function find_all/2, which takes a list of keys and a list of key-value pairs. The
function should use the find-function above to lookup every key from the first in the second
list. The result should be a list of all key-value pairs that were found with the same order
as they appeared in the given list of keys.

> warmup:find_all([d, x, c], [{c, 5}, {z, 7}, {d, 3}, {a, 1}]).

[{d, 3}, {c, 5}]

2.4 Higher Order Functions

g) Use lists:filter/2 to write a function positive/1, which takes a list of numbers L and returns
a list of all numbers in L, which are greater or equal to 0.

> warmup:positive([6, -5, 3, 0, -2]).

[6, 3, 0]

h) Use lists:all/2 to write a function all_positive/1, which takes a list of numbers and checks
whether all numbers in the list are greater or equal to 0.

> warmup:all_positive([1, 2, 3]).

true

> warmup:all_positive([1, -2, 3]).

false

i) Use lists:map/2 to write a function values/1, which takes a list of key-value pairs and returns
a list of only the values.

> warmup:values([{c, 5}, {z, 7}, {d, 3}, {a, 1}]).

[5, 7, 3, 1]

j) Use lists:foldl/3 to write a function list_min, which computes the minimal element of a
nonempty list.

> warmup:list_min([7, 2, 9]).

2

3 Typing Erlang

Erlang can be typed via -spec function(...) -> annotations. One of the tools which can
process these annotations is called dialyzer and you can execute it via rebar3 dialyzer.

Examples:

-spec maximum(number (), number ()) -> number ().

maximum(X,Y) -> ...

a) Write functions that fulfill these type annotations:

-spec fun1(boolean (), boolean ()) -> number ().

-spec fun2(list({number , number ()}), any()) ->

{{notmatched , number ()}, {matched , number ()}}.

-spec fun3(list(any()), atom()) -> list({atom(), any()}).

b) Write type annotations for all previous functions in this exercise sheet.

c) Define a precise type annotation for this function:

fun4([]) -> error;

fun4([X]) -> X;

fun4([X | [Y | Ys]]) -> X ++ fun4([Y|Ys]).

What does the function fun4 do?

	Tool Setup
	Erlang Basics
	The Shell
	Testing
	Numbers, Lists, and Tuples
	Higher Order Functions

	Typing Erlang

