
Dr. Annette Bieniusa

Albert Schimpf, M. Sc.

TU Kaiserslautern
Fachbereich Informatik

AG Programmiersprachen

Exercise 3: Programming Distributed Systems

(Summer 2020)

Submission

• You need a team and a Gitlab repository for this exercise sheet.

• In your Git repository, create a branch for this exercise sheet (for example with git

checkout -b ex3)

• Create a folder named “ex3” in your repository and add your solutions to this folder.

• Create a merge request in Gitlab and assign Albert Schimpf as assignee. If you do not
want to get feedback on your solution, you can merge it by yourself.

• Test your submission with the provided test cases. Feel free to add more tests, but do
not change the existing test cases.

1 Logical clocks

Calculate the Lamport clock and vector clock timestamps t(e) for all events in the following
execution.

Process A

Process B

Process C

a1 a2 a3 a4

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

2 Time and causality

Give an example execution that shows that for two timestamps from Lamport clocks, C(e1) <
C(e2) does not imply that e1 → e2.

Prove that the other direction is valid: If e1 → e2, then t(e1) < t(e2).

3 Implementing Vectorclocks

A vector clock is a mapping from processes to positive integers1. Implement a module named
vectorclock with the following functions:

• new() creates a new vector clock, where all processes have value 0.

• increment(VC, P) increments the entry of process P by 1.

• get(VC, P) returns the value for process P.

• leq(VC1, VC2) checks, whether VC1 is less than or equal to VC2. This is the case, iff
∀P. get(V C1, P ) ≤ get(V C2, P ).

1In the literature it is often assumed that processes are numbered which allows to write down clocks

like [4, 7, 3] or

4
7
3

 instead of the longer {p1 7→ 4, p2 7→ 7, p3 7→ 3}. However, in this exercise we

do not assume that the number of processes is known and arbitrary terms can be used as process
names.



• merge(VC1, VC2) merges two vector clocks by computing their least upper bound (the small-
est vector clock V, such that V C1 ≤ V and V C2 ≤ V ).


	Logical clocks
	Time and causality
	Implementing Vectorclocks

