
Dr. Annette Bieniusa

Albert Schimpf, M. Sc.

TU Kaiserslautern
Fachbereich Informatik

AG Programmiersprachen

Exercise 5: Programming Distributed Systems

(Summer 2020)

Submission

• You need a team and a Gitlab repository for this exercise sheet.

• In your Git repository, create a branch for this exercise sheet (for example with git

checkout -b ex5)

• Create a folder named “ex5” in your repository and add your solutions to this folder.

• Create a merge request in Gitlab and assign Albert Schimpf as assignee. If you do not
want to get feedback on your solution, you can merge it by yourself.

• Test your submission with the provided test cases. Feel free to add more tests, but do
not change the existing test cases.

1 Specifying Causal Order

Alice and Bob come up with two different variants of the causal-order property:

Causal-Broadcast CBA If pi delivers m, then pi must first deliver every message m′ with
m′ → m.

Causal-Broadcast CBB If pi delivers m′ and m and m′ → m, then pi must deliver m′ before
m.

• Give an examplary execution to show that CBA and CBB are not equivalent.

• Which one is more general, i.e. does CBA ⇒ CBB or CBB ⇒ CBA?

2 Causal Broadcast

Give an example execution, which shows that the following algorithm does not correctly imple-
ment causal broadcast.

State:

pending // set of messages that cannot be delivered yet

delivered // set of delivered message -ids

last // message -id of last received message

Upon Init do:

pending <- ∅;
delivered <- {none};

last <- none;

Upon rco -Broadcast(m) do

trigger rco -Deliver(self , m);

uid <- generateUniqueId(m);

trigger rb -Broadcast(uid , last , m);

delivered <- delivered ∪ {uid};

last <- uid;

Upon rb-Deliver(p, uid , lastm, m) do

if (p 6= self) then

pending <- pending ∪ {(p, uid , lastm, m)};

while exists (q, uid , lastm, mq) ∈ pending such that lastm ∈ delivered
pending <- pending \ {(q, uid , lastm, mq)};

trigger rco -Deliver(q, mq);

delivered <- delivered ∪ {uid}

last <- uid

3 Causal Reliable Broadcast - Improved

• Give a variant of the Causal Reliable Broadcast Algorithm with no waiting that builds
on fifo-Broadcast.

• Assuming that *no process ever fails*, add some form of garbage collection on the local
past.

4 Implementing the Broadcast Algorithms

The algorithms you will implement in the tasks below are based on a link layer, which is
provided in the template for this exercise. This link layer implements an abstraction of the
communication network that simplifies the testing of your implemenations.

The link_layer module provides the following functions, that all take the link-layer instance
LL as their first argument:

%% sends Data to other Node

send(LL , Data , Node)

%% Registers a receiver for the broadcast

register(LL, Receiver)

%% get a list of all nodes/prcoesses (including itself)

all_nodes(LL)

%% get a list of all other nodes/processes (excluding itself)

other_nodes(LL)

%% get a descriptor for this node

this_node(LL)

You can assume that the link layer implements the perfect-link model as discussed in the lecture.

4.1 Best-effort broadcast

Implement a module named best_effort_broadcast, which implements the best-effort broadcast
algorithm from the lecture.

The module should provide the following exported functions:

1. A function start_link(LinkLayer, RespondTo), which starts a process handling the algo-
rithm. If it succeeds, the function returns a tuple {ok, Pid}, where Pid is a process id
used in later calls to broadcast (see below). The first argument of the function is a refer-
ence to the link-layer process, which is to be used for communicating with other nodes
(see above). The second argument is a process id for the process representing the appli-
cation/higher level. When delivering a broadcast message Msg, the tuple {deliver, Msg}

should be sent to this process.

2. A function broadcast(Pid, Messsage), which broadcasts a message to all processes partici-
pating in the broadcast. The first argument is the process id returned by start_link, the
second argument is the message to be broadcast. The return value should be the atom
ok.

4.2 Reliable broadcast

Implement a module named reliable_broadcast, which implements the reliable broadcast algo-
rithm from the lecture.

The module should provide the start_link(LinkLayer, RespondTo) and broadcast(Pid, Messsage)

functions, similar to the best_effort_broadcast module.

4.3 Causal broadcast

Implement a module named causal_broadcast, which implements the causal broadcast algorithm
2 (waiting) from the lecture.

Again, the module should provide the start_link(LinkLayer, RespondTo) and broadcast(Pid,

Messsage) functions. To deliver a broadcast, it should send a message {deliver, Msg}.

	Specifying Causal Order
	Causal Broadcast
	Causal Reliable Broadcast - Improved
	Implementing the Broadcast Algorithms
	Best-effort broadcast
	Reliable broadcast
	Causal broadcast

