
Programming Distributed Systems
01 Foundations

Annette Bieniusa

FB Informatik
TU Kaiserslautern

Summer Term 2020

Annette Bieniusa Programming Distributed Systems Summer Term 2020 1/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2020 2/ 49

Large-scale distributed systems

All of these applications and systems have something in common:

Global-scale user base (and users are so annoying with all their
demands and expectations)
Composed of a myriad of services (storage services, web services,
membership services, authentication service, . . .)
Materialized by a huge number of machines, often scattered
through-out the world
Very profitable (with some exceptions . . .)

Annette Bieniusa Programming Distributed Systems Summer Term 2020 3/ 49

What is a distributed system?

Annette Bieniusa Programming Distributed Systems Summer Term 2020 4/ 49

Definition: Distributed system

A distributed system is one in which components located on networked
computers communicate and coordinate their actions only by passing
messages.[1, p. 2]

– Coulouris et al. Distributed Systems: Concepts and Design
(Addison-Wesley, 2011).

Annette Bieniusa Programming Distributed Systems Summer Term 2020 5/ 49

More Definitions [1]

A service is a distinct part of a computer system that mangages a
collection of related resources and presents their functionality to users
and applications.

A server is a running program (i.e. a process) on a networked
computer that accepts requests from programms running on other
computers to perform a service and respond appropriately.

The requesting processes are clients.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 6/ 49

Infamous definition by famous distributed systems
researcher

Source: https://commons.wikimedi
a.org/wiki/File:Leslie Lamport.jpg

A distributed system is one in which the
failure of a computer you didn’t even know
existed can render your own computer
unusable.
– Leslie Lamport (ACM Turing Award
2013)

Annette Bieniusa Programming Distributed Systems Summer Term 2020 7/ 49

https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg
https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg

Characteristics

Concurrency of components

Lack of global time

Independence of failures

Annette Bieniusa Programming Distributed Systems Summer Term 2020 8/ 49

What do we gain by distribution?

From “Why are Distributed Systems so Hard?” by deniseyu is licensed under CC BY 4.0

Annette Bieniusa Programming Distributed Systems Summer Term 2020 9/ 49

https://deniseyu.io/distsystalk

Scalability: If, instead of using a single machine to run my system, I
use N machines (N >> 1), then I will have N times more resources
(storage / processing power) and hopefully my system will be (close to)
N times faster / answer N times as many requests in the same time
unit.

Fault-tolerance / Dependability: If I use N machines to support my
system and f of them (f < N) fail, then my system can still operate.

Low latency: A request will be served faster by a machine that is
closer to me.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 10/ 49

Challenges in Distributed Computing I
Security

Confidentiality
Integrity
Availability

Concurrency

Coordination and Synchronization
Conflict detection and resolution

Scalability

Handling increase of requests
Handling increase of resources
Elasticity

Annette Bieniusa Programming Distributed Systems Summer Term 2020 11/ 49

Challenges in Distributed Computing II

Heterogenity

Interoperability
Standardization

Failure handling

Detecting failures
Masking failures
Tolerating failures
Recovery

Annette Bieniusa Programming Distributed Systems Summer Term 2020 12/ 49

What can possibly go wrong . . .

Annette Bieniusa Programming Distributed Systems Summer Term 2020 13/ 49

Sometimes, voodoo is involved

Annette Bieniusa Programming Distributed Systems Summer Term 2020 14/ 49

Sometimes, problems can be really expensive

Annette Bieniusa Programming Distributed Systems Summer Term 2020 15/ 49

Sometimes, everything goes wrong

Annette Bieniusa Programming Distributed Systems Summer Term 2020 16/ 49

“8 Fallacies of Distributed Systems” by deniseyu is licensed under CC BY 4.0
Annette Bieniusa Programming Distributed Systems Summer Term 2020 17/ 49

https://deniseyu.io/art/sketchnotes/topic-based/8-fallacies.png

Annette Bieniusa Programming Distributed Systems Summer Term 2020 18/ 49

The real cost of downtime

For the Fortune 1000, the average total cost of unplanned application
downtime per year is $1.25 billion to $2.5 billion.
The average hourly cost of an infrastructure failure is $100,000 per
hour.
The average cost of a critical application failure per hour is $500,000
to $1 million.

– Source: Alan Shimal, https://devops.com/real-cost-downtime/, Feb 11, 2015

Annette Bieniusa Programming Distributed Systems Summer Term 2020 19/ 49

High availability
Availability % Downtime per year per month per day
90% 36.5 days 72 hours 2.4 hours
95% 18.25 days 36 hours 1.2 hours
99% 3.65 days 7.2 hours 14.4 min
99.5% 1.83 days 3.6 hours 7.2 min
99.9% 8.76 hours 43.8 min 1.44 min
99.99% 52.56 min 4.38 min 8.64 s
99.999% 5.26 min 25.9 s 864.3 ms
99.9999999% 31.5569 ms 2.6297 ms 0.0864 ms

Examples:

1&1 DSL: average availability for internet connections is 97%/year (excluding
maintenance).[3]
Ericsson AXD301, a high-performance highly-reliable ATM switch from 1998, has
shown 99.9999999% in 8 month trial period.[2]

Annette Bieniusa Programming Distributed Systems Summer Term 2020 20/ 49

Summary

Major technical developments of the last two decades
Non-functional requirements define the Quality of Service

Reliability
Security
Performance
Adaptability

Focus in this course is Scalability and Consistency under
Replication

Annette Bieniusa Programming Distributed Systems Summer Term 2020 21/ 49

Models for Distributed System

Annette Bieniusa Programming Distributed Systems Summer Term 2020 22/ 49

Classification of System Models

1 Physical model
What are the types of computing devices and how are they
interconnected?

2 Architectural model
What are the entities that are communicating?
How do they communicate?
What are their roles and responsibilities?
What is their placement in the physical infrastructure?

3 Fundamental model
What are the relevant aspects of a system? ⇒ Simplifications of
complex real-world systems
How can we generalize specific problems or findings? ⇒
Distributed algorithms and impossibility results

Annette Bieniusa Programming Distributed Systems Summer Term 2020 23/ 49

Fundamental model

1 Interaction model

2 Failure model

3 Security model

Annette Bieniusa Programming Distributed Systems Summer Term 2020 24/ 49

Let’s go back to the definition

A distributed system is composed by a set of processes that are
interconnected through some network where processes seek to achieve
some form of cooperation to execute tasks by sending messages. [1,
p. 2]

Annette Bieniusa Programming Distributed Systems Summer Term 2020 25/ 49

Formal model: Process
Processes Π = p1, . . . , pn are an abstract notion of machine/node.

Unless stated otherwise, we assume that all processes of the system
run the same local algorithm.
Processes communicate through the exchange of messages.
Each process is in essence a (deterministic) automaton.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 26/ 49

Formal model: Network
A network is modeled as graph G = (Π, E) where Π is the set of
processes and E represents the communication channels (i.e,
links) between pairs of processes.

Assumption: Every process is connected to every other by a
bidirectional link.
In practice: Different topologies can be used, requiring routing
algorithms
Often, algorithms can be specialized for specific topologies

Annette Bieniusa Programming Distributed Systems Summer Term 2020 27/ 49

Assumptions

A process step consists of receiving a message, executing a local
computation, and sending messages to processes.
Interactions between local components of the same process are
viewed as local computation (and not as communication!)
We can relate a reply message to a response.

In practice, this is often achieved by using identifiers or timestamps
based on local clocks.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 28/ 49

Interaction model

Communication
Latency
Bandwidth
Jitter

Coordination
Clocks and timing events for ordering of events
Clock-drift rate

Annette Bieniusa Programming Distributed Systems Summer Term 2020 29/ 49

Time in Distributed Systems

Synchronous System [4]
Time to execute each step has known lower and upper bound.
Messages that have been sent over channels are received within a
known bounded time.
Each process has a local clock with bound on drift from real time.a

aTo simplify the reasoning about the processes, we assume that a global
real-time clock exists, but it is not accessible to the processes.

Asynchronous System:
There are no assumptions about the time required to deliver a message,
process a message or clock-drift rates.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 30/ 49

This might look as not a big deal, but actually the timing assumptions
have strong implications:

In a synchronous system, you can detect when a process fails (in
some particular fault models).
In a synchronous system, you can have protocols evolve in
synchronous steps.
In an asynchronous system, there are some problems that actually
cannot be solved.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 31/ 49

Processes and events

A system is composed of a collection of processes.
Each process consists of a sequence of events.

What is an event?

Depends on concrete model (e.g. single machine instructions or
executing of one procedure)
Typically, sending and receiving of messages are events.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 32/ 49

Happens-before Relation
In asynchronous systems, it is only possible to determine a relative
order of events[5].

The happens-before relation → on the set of events of a system is the
smallest relation satisfying the following three conditions:

1 If a and b are events in the same process, and a comes before b,
then a→ b.

2 If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a→ b.

3 If a→ b and b→ c, then a→ c.

Two distinct events a and b are said to be concurrent if a 6→ b and
b 6→ a.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 33/ 49

Model vs Reality

Synchronous systems can be built.
Google’s TrueTime API uses atomic clocks, GPS positioning and
clever tricks to provide globally synchronized clocks with deviation
of less than 6ms.

Asynchronous models are realistic in many situations.
Practical systems are actually partially synchronous (or eventually
synchronous).
This means that the system is considered to be asynchronous, but
it is assumed that eventually (meaning: for sure at some time in
the future that is unknown) the system will behave in a
synchronous way (for long enough).

Annette Bieniusa Programming Distributed Systems Summer Term 2020 34/ 49

Fault models

Annette Bieniusa Programming Distributed Systems Summer Term 2020 35/ 49

Process Fault Model
A process that never fails is correct.
A correct process never deviates from its expected/prescribed
behaviour.
It executes the algorithm as expected and sends all messages
prescribed by it.

Remarks:

Failed processes might deviate from their prescribed behaviour in
different ways.
The unit of failure is the process, i.e., when it fails, all its
components fail at the same time.
The (possible) behaviours of a process that fails is defined by the
process fault model.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 36/ 49

Classical Models
Crash-Fault Model

When a process fails, it stops sending any messages (from that
point onward).
This is the fault model that we will consider most of the times.

Omission-Fault Model
A process that fails omits the transmission (or reception) of any
number of messages (e.g. due to buffer overflows).

Fail-Stop Model
Similar to the crash model, except that upon failure the process
“notifies” all other processes of its own failure.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 37/ 49

Byzantine (or Arbitrary) Fault Model

A failed process might deviate from its protocol in any arbitrary
way.

Examples:

Duplicate Messages
Create invalid messages
Modify values received from other processes

Why is this relevant?

Can capture memory corruption
Can capture software bugs
Can capture a malicious attacker that controls a process

Annette Bieniusa Programming Distributed Systems Summer Term 2020 38/ 49

Byzantine (or Arbitrary) Fault Model

A failed process might deviate from its protocol in any arbitrary
way.

Examples:

Duplicate Messages
Create invalid messages
Modify values received from other processes

Why is this relevant?

Can capture memory corruption
Can capture software bugs
Can capture a malicious attacker that controls a process

Annette Bieniusa Programming Distributed Systems Summer Term 2020 38/ 49

Network Fault Model

The Network Fault Model captures the assumptions made concerning
the links that interconnect processes.

Namely, it captures what can go wrong in the network regarding:

Loss of messages sent between processes
Possibility of duplication of messages
Possibility for corruption of messages

Annette Bieniusa Programming Distributed Systems Summer Term 2020 39/ 49

Fair-Loss Model

A model that captures the possibility of messages being lost albeit
in a fair way.

Properties:

Fair-Loss: Considering two correct processes i and j; if i sends a
message m to j infinitely often, then j delivers m infinitely often.
Finite Duplication: Considering two correct processes i and j; if
i sends a message m to j a finite number of times, then j cannot
deliver m infinite times.
No Creation: If a correct process j delivers a message m, then m
was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 40/ 49

Perfect-Link Model (aka Reliable)

A stronger model that assumes the links between processes are
well behaved.

Properties:

Reliable Delivery: Considering two correct processes i and j; if i
sends a message m to j, then j eventually delivers m.
No Duplication: No message is delivered by a process more than
once.
No Creation: If a correct process j delivers a message m, then m
was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 41/ 49

What about reality?

Fair-loss Point-to-Point Link abstraction ≈ message transmission
on UDP sockets.

Perfect-Link Model ≈ TCP sockets
TCP includes acknowledgements and retransmissions
Problem when assuming asynchronous system: Connection is
broken if the receiver is unresponsive

Annette Bieniusa Programming Distributed Systems Summer Term 2020 42/ 49

Algorithms Specification and Properties

Why do we tend to think in terms of properties?
Quick answer: Because algorithms are composable, and the design
of an algorithm depends on the underlying properties provided by
other algorithms.

What do these properties capture?

Correctness criteria for the algorithm (and its implementation(s))
Restrictions on the valid executions of the algorithm

Two fundamental types of properties: Safety & Liveness

Annette Bieniusa Programming Distributed Systems Summer Term 2020 43/ 49

Safety Properties

Conditions that must be enforced at any point of the execution
Intuitively, bad things that should never happen.
Relevant aspects:

The trace of an empty execution is always safe (“do nothing and
you shall do nothing wrong”).
If every prefix of a trace does not violate safety, the trace will never
violate safety.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 44/ 49

Liveness Properties

Conditions that should be enforced at some point of an execution
Intuitively, good things that should happen eventually.
Relevant aspects:

One can always extend the trace of an execution in a way such
that it will respect liveness conditions (“if you haven’t done
anything good yet, you might do it next”).

Annette Bieniusa Programming Distributed Systems Summer Term 2020 45/ 49

Safety vs Liveness Properties

Systems are not about lying nor about keeping silent, but about telling
the truth!

Correct algorithms will have both Safety and Liveness properties.
Some properties are difficult to classify within one of these classes,
as they might mix aspects of safety and liveness.
Usually, one can decompose these properties into simpler ones
through conjunctions.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 46/ 49

Summary: Models for Distributed Systems

A distributed systems model is a combination of

1 a process abstraction,
2 a link abstraction, and
3 a timing abstraction.

Correct behavior of distributed systems require end-to-end argments
and involve checks and mechanisms at many different levels [6].

Annette Bieniusa Programming Distributed Systems Summer Term 2020 47/ 49

Further reading I
[1] George Coulouris u. a. Distributed Systems: Concepts and Design.

5th. USA: Addison-Wesley Publishing Company, 2011.
[2] Mats Cronqvist. The nine nines. Talk at Erlang Factory SF Bay

Area 2010. 2010. url: https://www.erlang-factory.com/upload/
presentations/243/ErlangFactorySFBay2010-MatsCronqvist.pdf.

[3] 1und1 Telecom GmbH. Allgemeine Geschaeftsbedingungen. 2020.
url: https://dsl.1und1.de/AgbUebersicht.

[4] Vassos Hadzilacos und Sam Toueg. A Modular Approach to
Fault-Tolerant Broadcasts and Related Problems. Techn. Ber.
USA, 1994.

[5] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Commun. ACM 21.7 (1978), S. 558–565.
doi: 10.1145/359545.359563. url:
https://doi.org/10.1145/359545.359563.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 48/ 49

https://www.erlang-factory.com/upload/presentations/243/ErlangFactorySFBay2010-MatsCronqvist.pdf
https://www.erlang-factory.com/upload/presentations/243/ErlangFactorySFBay2010-MatsCronqvist.pdf
https://dsl.1und1.de/AgbUebersicht
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

Further reading II

[6] J. H. Saltzer, D. P. Reed und D. D. Clark. “End-to-End
Arguments in System Design”. In: ACM Trans. Comput. Syst. 2.4
(Nov. 1984), S. 277–288. issn: 0734-2071. url:
https://doi.org/10.1145/357401.357402.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 49/ 49

https://doi.org/10.1145/357401.357402

	What is a distributed system?
	What can possibly go wrong …
	Models for Distributed System
	Fault models

