- N
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Programming Distributed Systems

01 Foundations

Annette Bieniusa

FB Informatik
TU Kaiserslautern

Summer Term 2020

Annette Bieniusa Programming Distributed Systems Summer Term 2020

1/ 49

-)
& TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

© reddit n &3 YouTube amazon

@ = & [
TomTOM T - -Syst, 3
ystems GO gle

~
© spotity H Obltcomc”‘a"’a'

E/ & @) EVERNOTE
Deutsche Bank & - - (0),

Annette Bieniusa Programming Distributed Systems Summer Term 2020 2/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Large-scale distributed systems

All of these applications and systems have something in common:

m Global-scale user base (and users are so annoying with all their
demands and expectations)

m Composed of a myriad of services (storage services, web services,
membership services, authentication service, ...)

m Materialized by a huge number of machines, often scattered
through-out the world

m Very profitable (with some exceptions ...)

Annette Bieniusa Programming Distributed Systems Summer Term 2020 3/ 49

- .
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

What is a distributed system?

Annette Bieniusa Programming Distributed Systems Summer Term 2020 4/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Definition: Distributed system

A distributed system is one in which components located on networked
computers communicate and coordinate their actions only by passing
messages.[1, p. 2]

— Coulouris et al. Distributed Systems: Concepts and Design
(Addison-Wesley, 2011).

Annette Bieniusa Programming Distributed Systems Summer Term 2020 5/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

More Definitions [1]

A service is a distinct part of a computer system that mangages a
collection of related resources and presents their functionality to users
and applications.

A server is a running program (i.e. a process) on a networked
computer that accepts requests from programms running on other
computers to perform a service and respond appropriately.

The requesting processes are clients.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 6/ 49

-
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Infamous definition by famous distributed systems
researcher

A distributed system is one in which the
failure of a computer you didn’t even know
existed can render your own computer
unusable.

— Leslie Lamport (ACM Turing Award
2013)

i YT

Source: https://commons.wikimedi
a.org/wiki/File:Leslie_Lamport.jpg

Annette Bieniusa Programming Distributed Systems Summer Term 2020 7/ 49

https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg
https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Characteristics

m Concurrency of components

m Lack of global time

m Independence of failures

Annette Bieniusa Programming Distributed Systems

Summer Term 2020

8/ 49

-)
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

What do we gain by distribution?

From “Why are Distributed Systems so Hard?" by deniseyu is licensed under CC BY 4.0

Annette Bieniusa Programming Distributed Systems Summer Term 2020 9/ 49

https://deniseyu.io/distsystalk

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Scalability: If, instead of using a single machine to run my system, |
use N machines (N >> 1), then | will have N times more resources
(storage / processing power) and hopefully my system will be (close to)
N times faster / answer N times as many requests in the same time
unit.

Fault-tolerance / Dependability: If | use N machines to support my
system and f of them (f < N) fail, then my system can still operate.

Low latency: A request will be served faster by a machine that is
closer to me.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 10/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Challenges in Distributed Computing |
Security

m Confidentiality
m Integrity
= Availability

Concurrency

m Coordination and Synchronization
m Conflict detection and resolution

Scalability

m Handling increase of requests
m Handling increase of resources
m Elasticity

Annette Bieniusa Programming Distributed Systems

Summer Term 2020

11/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Challenges in Distributed Computing Il

Heterogenity

m Interoperability
m Standardization

Failure handling

m Detecting failures
m Masking failures
m Tolerating failures
m Recovery

Annette Bieniusa Programming Distributed Systems

Summer Term 2020

12/ 49

TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

What can possibly go wrong . ..

Annette Bieniusa Programming Distributed Systems Summer Term 2020 13/ 49

- N
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Sometimes, voodoo is involved

: — (_ rotlow) v
How tf do you have a negative number of
followers, what kind of voodoo is this fam
@AnassLamouri

Anass Lamouri BS.
(@AnassLamouri

IBANLIEUE SALE MUSIQUE|

-31 2,924

Tweets hot L

/g ™ Anass Lamouri BS.
‘%‘ @MyNinjaTurtle what do u think
Y ¥ youtu.be/PDEJjToAFwc ?

3:08PM - 5 Jan 2016

treest sl B @ ey D D DO

o1 (=} 0s B

Annette Bieniusa Programming Distributed Systems Summer Term 2020

14/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Sometimes, problems can be really expensive

RBS and NatWest customers 'had loan
repayments taken twice'

Current

loan repayments taken twice

Ny : Royal Bank of Scotland BS fined

RBS and NatWest borrowers are being advised to check their bank accounts

xp(;x)u;\i.:g o ;ﬁ:g:&:g the RBS Group that some customers have had loan £ 5 6 m over IT m el t d own i n 2 012

RBS said it has charged some personal loan borrowers twice following the IT
glitch that has caused chaos for hundreds of th dsof @ the

past two weeks. There are also as-yet-unconfirmed reports on Twitter that some Updated / Thursday, 20 Nov 2014 18:20
of the group's 800,000 mortgage customers are also affected.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 15/ 49

-
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Sometimes, everything goes wrong

Our servers are experiencing issues. Please come back

later.

Annette Bieniusa

| @ reckncA o sw roo s oo

CLOUD ACADEMY —

Cloud Bottlenecks: How Pokémon Go (and
other game dev teams) caught them all

Lesson: “Something that works with two million users doesn’t always work with 10 million."

MATTHEW ROTHENBERG - 1/26/2017, 1:30 PM

Programming Distributed Systems Summer Term 2020

16/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

(D’W\e nefwork s 2\ Latency is ZERO @3‘”‘0“““"‘“’* is infinite
reliable o

Mg
EEERTR 41\ JPP,
— \vading. ..

@deniseyu2l

1o e g etk 15
—?\\:m::,\:zg;s ’ Dja U Q@@U@S @T\ne nSLLure,

<ol covloded by L. hf/'é\
g 0"5 s g‘\w“ or Sun Micos{stens
bco\-sdn & Somes Gosting

odded w 1247 by
ool #9 ed ‘ @T090\03*i doesn't
@Tml\senl\' costs 40 C@ There is only change

one ao\minish’&\\’or

“8 Fallacies of Distributed Systems” by deniseyu is licensed under CC BY 4.0

Annette Bieniusa Programming Distributed Systems Summer Term 2020

17/ 49

https://deniseyu.io/art/sketchnotes/topic-based/8-fallacies.png

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

dlf'S TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE STOR

It’s official: Sharks no longer a threat to
subsea Internet cables

First known cable shark attacks were in 1985.

DAVID KRAVETS - 7/10/2015, 6:16 PM

Annette Bieniusa Programming Distributed Systems Summer Term 2020 18/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

The real cost of downtime

For the Fortune 1000, the average total cost of unplanned application
downtime per year is $1.25 billion to $2.5 billion.
The average hourly cost of an infrastructure failure is $100,000 per

hour.
The average cost of a critical application failure per hour is $500,000

to $1 million.

— Source: Alan Shimal, https://devops.com/real-cost-downtime/, Feb 11, 2015

Annette Bieniusa Programming Distributed Systems Summer Term 2020 19/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

High availability

Availability % Downtime per year per month per day
90% 36.5 days 72 hours 2.4 hours
95% 18.25 days 36 hours 1.2 hours
99% 3.65 days 7.2 hours 14.4 min
99.5% 1.83 days 3.6 hours 7.2 min
99.9% 8.76 hours 43.8 min 1.44 min
99.99% 52.56 min 4.38 min 8.64 s
99.999% 5.26 min 259 s 864.3 ms
99.9999999% 31.5569 ms 2.6297 ms 0.0864 ms

Examples:

m 1&1 DSL: average availability for internet connections is 97% /year (excluding

maintenance).[3]

m Ericsson AXD301, a high-performance highly-reliable ATM switch from 1998, has

shown 99.9999999% in 8 month trial period.[2]

Annette Bieniusa

Programming Distributed Systems

Summer Term 2020

20/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Summary

m Major technical developments of the last two decades
m Non-functional requirements define the Quality of Service
m Reliability
m Security
m Performance
m Adaptability
m Focus in this course is Scalability and Consistency under

Replication

Annette Bieniusa Programming Distributed Systems Summer Term 2020 21/ 49

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Models for Distributed System

Annette Bieniusa Programming Distributed Systems Summer Term 2020 22/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Classification of System Models

Physical model
m What are the types of computing devices and how are they
interconnected?
Architectural model
m What are the entities that are communicating?
m How do they communicate?
m What are their roles and responsibilities?
m What is their placement in the physical infrastructure?
Fundamental model
m What are the relevant aspects of a system? = Simplifications of
complex real-world systems
m How can we generalize specific problems or findings? =
Distributed algorithms and impossibility results

Annette Bieniusa Programming Distributed Systems Summer Term 2020 23/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Fundamental model

Interaction model
Failure model

Security model

Annette Bieniusa Programming Distributed Systems

Summer Term 2020

24/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Let's go back to the definition

A distributed system is composed by a set of processes that are
interconnected through some network where processes seek to achieve

some form of cooperation to execute tasks by sending messages. [1,
p. 2]

Annette Bieniusa Programming Distributed Systems Summer Term 2020 25/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Formal model: Process

m Processes Il = py,...,py, are an abstract notion of machine/node.
m Unless stated otherwise, we assume that all processes of the system

run the same local algorithm.
m Processes communicate through the exchange of messages.
m Each process is in essence a (deterministic) automaton.

Process

[computation]

receive send

incoming message outgoing message

Annette Bieniusa Programming Distributed Systems Summer Term 2020

26/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Formal model: Network

m A network is modeled as graph G = (II, E) where II is the set of

processes and E' represents the communication channels (i.e,
links) between pairs of processes.

m Assumption: Every process is connected to every other by a
bidirectional link.

m In practice: Different topologies can be used, requiring routing
algorithms

m Often, algorithms can be specialized for specific topologies

Annette Bieniusa Programming Distributed Systems Summer Term 2020

27/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Assumptions

m A process step consists of receiving a message, executing a local
computation, and sending messages to processes.

m Interactions between local components of the same process are
viewed as local computation (and not as communication!)

m We can relate a reply message to a response.
m In practice, this is often achieved by using identifiers or timestamps
based on local clocks.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 28/ 49

- 2
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Interaction model

Communication

m Latency
= Bandwidth
m Jitter

Coordination

m Clocks and timing events for ordering of events
m Clock-drift rate

Annette Bieniusa Programming Distributed Systems Summer Term 2020 29/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Time in Distributed Systems

Synchronous System [4]

m Time to execute each step has known lower and upper bound.
m Messages that have been sent over channels are received within a

known bounded time.
m Each process has a local clock with bound on drift from real time.?

“To simplify the reasoning about the processes, we assume that a global
real-time clock exists, but it is not accessible to the processes.

Asynchronous System:
There are no assumptions about the time required to deliver a message,
process a message or clock-drift rates.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 30/ 49

/

- "
® TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

This might look as not a big deal, but actually the timing assumptions
have strong implications:
® In a synchronous system, you can detect when a process fails (in

some particular fault models).
m In a synchronous system, you can have protocols evolve in

synchronous steps.
m In an asynchronous system, there are some problems that actually

cannot be solved.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 31/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Processes and events

m A system is composed of a collection of processes.
m Each process consists of a sequence of events.

What is an event?

m Depends on concrete model (e.g. single machine instructions or
executing of one procedure)
m Typically, sending and receiving of messages are events.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 32/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Happens-before Relation

In asynchronous systems, it is only possible to determine a relative
order of events[5].

The happens-before relation — on the set of events of a system is the
smallest relation satisfying the following three conditions:
If @ and b are events in the same process, and a comes before b,
then a — b.
If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a — b.
Ifa—band b — ¢, then a — c.

Two distinct events a and b are said to be concurrent if a 4 b and

b4 a.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 33/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Model vs Reality

m Synchronous systems can be built.
m Google's TrueTime API uses atomic clocks, GPS positioning and
clever tricks to provide globally synchronized clocks with deviation
of less than 6ms.

m Asynchronous models are realistic in many situations.

m Practical systems are actually partially synchronous (or eventually
synchronous).

m This means that the system is considered to be asynchronous, but
it is assumed that eventually (meaning: for sure at some time in
the future that is unknown) the system will behave in a
synchronous way (for long enough).

Annette Bieniusa Programming Distributed Systems Summer Term 2020 34/ 49

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Fault models

Annette Bieniusa Programming Distributed Systems Summer Term 2020 35/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Process Fault Model

m A process that never fails is correct.

m A correct process never deviates from its expected/prescribed
behaviour.

m It executes the algorithm as expected and sends all messages
prescribed by it.

Remarks:

m Failed processes might deviate from their prescribed behaviour in
different ways.

m The unit of failure is the process, i.e., when it fails, all its
components fail at the same time.

m The (possible) behaviours of a process that fails is defined by the
process fault model.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 36/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Classical Models

Crash-Fault Model

m When a process fails, it stops sending any messages (from that
point onward).
m This is the fault model that we will consider most of the times.

Omission-Fault Model

m A process that fails omits the transmission (or reception) of any
number of messages (e.g. due to buffer overflows).

Fail-Stop Model

m Similar to the crash model, except that upon failure the process
“notifies” all other processes of its own failure.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 37/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Byzantine (or Arbitrary) Fault Model
m A failed process might deviate from its protocol in any arbitrary
way.
Examples:

m Duplicate Messages
m Create invalid messages
m Modify values received from other processes

Why is this relevant?

Annette Bieniusa Programming Distributed Systems Summer Term 2020 38/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Byzantine (or Arbitrary) Fault Model
m A failed process might deviate from its protocol in any arbitrary
way.
Examples:

m Duplicate Messages
m Create invalid messages
m Modify values received from other processes

Why is this relevant?

m Can capture memory corruption
m Can capture software bugs
m Can capture a malicious attacker that controls a process

Annette Bieniusa Programming Distributed Systems Summer Term 2020 38/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Network Fault Model

The Network Fault Model captures the assumptions made concerning
the links that interconnect processes.

Namely, it captures what can go wrong in the network regarding:

m Loss of messages sent between processes
m Possibility of duplication of messages
m Possibility for corruption of messages

Annette Bieniusa Programming Distributed Systems Summer Term 2020 39/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Fair-Loss Model

m A model that captures the possibility of messages being lost albeit
in a fair way.

Properties:

m Fair-Loss: Considering two correct processes i and j; if ¢ sends a
message m to j infinitely often, then j delivers m infinitely often.

m Finite Duplication: Considering two correct processes ¢ and j; if
1 sends a message m to j a finite number of times, then j cannot
deliver m infinite times.

m No Creation: If a correct process j delivers a message m, then m
was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 40/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Perfect-Link Model (aka Reliable)

m A stronger model that assumes the links between processes are

well behaved.

Properties:

m Reliable Delivery: Considering two correct processes ¢ and j; if ¢
sends a message m to j, then j eventually delivers m.
m No Duplication: No message is delivered by a process more than

once.
m No Creation: If a correct process j delivers a message m, then m

was sent to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 41/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

What about reality?

m Fair-loss Point-to-Point Link abstraction =~ message transmission
on UDP sockets.

m Perfect-Link Model ~ TCP sockets

m TCP includes acknowledgements and retransmissions
m Problem when assuming asynchronous system: Connection is
broken if the receiver is unresponsive

Annette Bieniusa Programming Distributed Systems Summer Term 2020 42/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Algorithms Specification and Properties

m Why do we tend to think in terms of properties?

m Quick answer: Because algorithms are composable, and the design
of an algorithm depends on the underlying properties provided by
other algorithms.

What do these properties capture?

m Correctness criteria for the algorithm (and its implementation(s))
m Restrictions on the valid executions of the algorithm

Two fundamental types of properties: Safety & Liveness

Annette Bieniusa Programming Distributed Systems Summer Term 2020 43/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Safety Properties

m Conditions that must be enforced at any point of the execution
m Intuitively, bad things that should never happen.

m Relevant aspects:
m The trace of an empty execution is always safe (“do nothing and

you shall do nothing wrong™).
m If every prefix of a trace does not violate safety, the trace will never

violate safety.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 44/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Liveness Properties

m Conditions that should be enforced at some point of an execution
m Intuitively, good things that should happen eventually.

m Relevant aspects:
m One can always extend the trace of an execution in a way such
that it will respect liveness conditions (“if you haven't done
anything good yet, you might do it next").

Annette Bieniusa Programming Distributed Systems Summer Term 2020 45/ 49

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Safety vs Liveness Properties

Systems are not about lying nor about keeping silent, but about telling
the truth!

m Correct algorithms will have both Safety and Liveness properties.

m Some properties are difficult to classify within one of these classes,
as they might mix aspects of safety and liveness.

m Usually, one can decompose these properties into simpler ones
through conjunctions.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 46/ 49

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Summary: Models for Distributed Systems

A distributed systems model is a combination of

a process abstraction,
a link abstraction, and
a timing abstraction.

Correct behavior of distributed systems require end-to-end argments
and involve checks and mechanisms at many different levels [6].

Annette Bieniusa Programming Distributed Systems Summer Term 2020 47/ 49

- "
= TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Further reading |

[1]
2]

[3]
[4]

[5]

George Coulouris u. a. Distributed Systems: Concepts and Design.
5th. USA: Addison-Wesley Publishing Company, 2011.

Mats Cronqvist. The nine nines. Talk at Erlang Factory SF Bay
Area 2010. 2010. URL: https://www.erlang-factory.com/upload/
presentations /243 /ErlangFactorySFBay2010-MatsCronqvist.pdf.
lundl Telecom GmbH. Allgemeine Geschaeftsbedingungen. 2020.
URL: https://dsl.1lund1l.de/AgbUebersicht.

Vassos Hadzilacos und Sam Toueg. A Modular Approach to
Fault-Tolerant Broadcasts and Related Problems. Techn. Ber.
USA, 1994.

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System". In: Commun. ACM 21.7 (1978), S. 558-565.
DOI: 10.1145/359545.359563. URL:
https://doi.org/10.1145/359545.359563.

Annette Bieniusa Programming Distributed Systems Summer Term 2020

https://www.erlang-factory.com/upload/presentations/243/ErlangFactorySFBay2010-MatsCronqvist.pdf
https://www.erlang-factory.com/upload/presentations/243/ErlangFactorySFBay2010-MatsCronqvist.pdf
https://dsl.1und1.de/AgbUebersicht
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

- "
= TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Further reading Il

[6] J. H. Saltzer, D. P. Reed und D. D. Clark. “End-to-End

Arguments in System Design”. In: ACM Trans. Comput. Syst. 2.4
(Nov. 1984), S. 277-288. 1SsN: 0734-2071. URL:
https://doi.org/10.1145/357401.357402.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 49/ 49

https://doi.org/10.1145/357401.357402

	What is a distributed system?
	What can possibly go wrong …
	Models for Distributed System
	Fault models

