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Coordination

m Need to manage the interactions and dependencies between
interactions in distributed systems

m Data synchronization

m Process synchronization

m Can be based on actual time or on relative order
m Example: No simultaneous access to shared resource
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Time in Distributed Systems

L

Bild von Gerd Altmann auf Pixabay
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Example: Running raxe [5]

Timestamps of files used to check what needs to be recompiled

— N
— file.c, 22:45:04
N
— file.o, 23:03:34
file.c file.o
22:45:04 23:03:34
Annette Bieniusa Programming Distributed Systems Summer Term 2020

4/ 39



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Example: Running raxe [5]

Here, compilation required:

AN
— file.c, 22:45:04
LN
— file.o, 23:03:34
file.c file.o file.c
22:45:04 23:03:34 23:15:07
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Example: Running raxe [5]

In a distributed file system where Computer 1 handles source files and
Computer 2 handles object files:

file.c
Computer 1 %
22:44:34
file.o
Computer 2 |
22:45:06
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Example: Running raxe [5]

In a distributed file system where Computer 1 handles source files and
Computer 2 handles object files:

fil?.c fil?.c

Computer 1 ‘ ‘
22:44:34  22:45:04

fil?.o

Computer 2

Pl

N
22:45:06
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Goals of this Learning path

In this learning path, you will learn

m to name use cases for physical and logical clocks

m to describe the principle workings and challenges of constructing
and synchronizing physical clocks

m to use Lamport timestamps and vector clocks to describe event
relations

m to derive the construction of vector clocks from causal event
histories

m to implement logical clocks in Erlang
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Physical clocks
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Timers based on quartz crystal oscillators

m Computers use quartz crystals as
timers

m Oscillates at specific frequency

m Used to update the system’s software
clock in CMOS RAM

m Consistent within one CPU

Wikipedia, Marcin Andrzejewski /
CC BY-SA 3.0
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Problems

m Oscillators get gradually out-of-sync

m Clock skew: difference in time values between different timers

m Clock drift at rate of ~ 1075s/s or 31.5 s/year
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Solar time as time reference

Noon

East Horizon West

m Solar second is 1/86.400 of solar day
m Problem: Period of earth rotation is not stable

= Our days are getting longer!
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Atomic clocks
m 9.192.631.770 transitions of Cesium-133 atom corresponded to
mean solar second in 1948
m Bureau International de I'Heure obtains averages from several
atomic clocks to obtain the International Atomic Time (TAI)
m Problem: Diverges slowly from solar time
m Universal Coordinated Time (UTC) introduces leap seconds

[— ‘

National Physical Laboratory / Public domain World's first caesium-133 atomic clock
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Definitions

m Let Cp(t) be the time at processor p at time ¢.
® In a perfect world: Cj(t) =t Vp,t

Accuracy

mVt,p: |Cp(t) —t| <«
m Achieved by external synchronization with a reference clock

Precision
= VEp, g |Cp(t) — Co(t)| <7
m Achieved by internal synchronization acroos all processors within a
system
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Network Time Protocol (NTP)

15 T3
b2 / \
y4! f y
T Ty

m Estimation of offset for process py:

0 — (T, —Th) + (T5 — Ty)
2
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Clock adjustments in NTP

m What should p do if 8§ > 07
m Push its own clock forward to adjust
m What should p do if § < 0?
m Time should not go backwards!
m Spread slowdown over time interval
m NTP used between pairs of servers
m Adjust the one that is more accurate, i.e. closer to the reference
clock in tree-like overlay

Annette Bieniusa Programming Distributed Systems Summer Term 2020 15/ 39
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Google True Time Service [1]

m Offers service in Google's server infrastructure with guaranteed
bounds
B TT.now () yields time value in interval [T}y, Typp] Where
Tupb - leb < bms
m Requires dedicated infrastructure
m Time masters with GPS receivers or atomic clocks placed in data
centers
m Detect and eliminate faulty time masters
m Knowledge about speed of messages across data centers
m Used for Spanner, a globally distributed database with
timestamped transactions
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Conclusion

m Physical clocks are very useful for measuring durations in a single
processor

m Clock drift must be controlled and adjusted to allow for
comparing timestamps based on different physical clocks

m Protocols for clock synchronisation

m NTP
m Google True Time Service
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Logical clocks
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Motivation

m Relative order of events = Causal dependencies and relations

m Two prominent approaches: Lamport clocks and vector clocks
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Happens-before relation (revisited)

m Three types of events in each process:
m Send events
m Receive events
m Local / internal events

The happens-before relation — on the set of events of a system is the
smallest relation satisfying the following three conditions:

If @ and b are events in the same process, and a comes before b,
then a — b.

If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a — b.

If a — cand ¢ — b, then a — b.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 20/ 39
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Lamport clocks

Idea: Associate time value C'(a) with event a such that

a—b = Cla)<C(b)

al as as
o o
1 b1 ba bs by
o
C1 C2 C3 Cq4
® o
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a—b = Cla)<C(b)
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Lamport clocks

Idea: Associate time value C'(a) with event a such that

a—b = Cla)<C(b)

al as as
o o
1 b1 ba bs by
o
C1 2 C2 3 C3 Cq4
® o
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Lamport clocks

Idea: Associate time value C'(a) with event a such that

Process C

Process B

Annette Bieniusa

a—b = Cla)<C(b)

ai az as

@ o
1 bl b2 2 bS b4 3

@

C1 2 C2 3 C3 4 5 Cq4
@ @
1 2 3 6

Programming Distributed Systems Summer Term 2020
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Lamport clocks[?]

m Each process p keeps an event counter [, initially 0.
m When an event that occurs at p that is not a receipt of a message,
l, is incremented by 1:

ly:=1,+1

m The value of [, during the execution (after incrementing ;) of
event a is denoted by C'(a) (the timestamp of event a).

m When a process sends a message, it adds a timestamp to the
message with value of [, at time of sending.

m When a process p receives a message m with timestamp [,,, p
increments its timestamp to

lp :=maz(ly,ly,) +1

Annette Bieniusa Programming Distributed Systems Summer Term 2020 22/ 39
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Properties of Lamport clocks

m Not unique, but can be made unique by pairing with process id
m We can show:a b = C(a) < C(b)
m Proof by induction over different cases of a — b
a occurs just before b in same process : C(b) =1, +1 > 1, = C(a)
a is the send event for receiving event b :
C(b) = max(lp,lm)+1>1,=Cla)
There exists event ¢ such that a — ¢ and a — b. By induction
hypothesis, C'(a) < C(c) and C(c) < C(b), hence C(a) < C(b)

Annette Bieniusa Programming Distributed Systems Summer Term 2020 23/ 39



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Properties of Lamport clocks

m Not unique, but can be made unique by pairing with process id
m We can show:a b = C(a) < C(b)
m Proof by induction over different cases of a — b
a occurs just before b in same process : C'(b) =1, +1 > 1, = C(a)
a is the send event for receiving event b :
C(b) = max(lp,lm)+1>1,=Cla)
There exists event ¢ such that a — ¢ and a — b. By induction
hypothesis, C'(a) < C(c) and C(c) < C(b), hence C(a) < C(b)
m But:
Cla)<C(b) # a—b

(see exercise)
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Causality

m Fundamental to many problems occurring in distributed computing

m The happens-before relation of events is often also called causality
relation [4].

m Examples: determining a consistent recovery point, detecting race
conditions, exploitation of parallelism

An event a may causally affect another event b if and only if a — b.

m The happens-before order — indicates only potential causal
relationship.

m Tracking whether an event indeed is a cause of another event is
much more involved and requires more complex dependency
analyses.
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Causal Histories[3]

m Let I, denote the set of events occurring at process p and E the

set of all executed events:

E=|]JE
peP

m The causal history of an event b € E is defined as
Cb)={a€ E|a—b}U{b}
m Note: Just a different representation of happens-before:

a—b & a#bAacC(b)

Annette Bieniusa Programming Distributed Systems Summer Term 2020
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Example: Causal history of b3

ay as as
® ®
by ba by by
c1 c 3 c4
®

C(b?)) = {ab b17 b27 b37 C1, 02}
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Tracking causal histories with event sets

Each process p stores current causal history as set of events C,.

m Initially, Cp := 10
m On each local event e at process p;, the event is added to the set:

Cp = CpU{e}

m On sending a message m, p updates C), with a sending event e
and attaches the updated C), to m.

m On receiving message m with causal history C'(m), p updates
with a receive event. Next, p adds the causal history from C(m),
yielding:

Cp :=CpuC(m)
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Example: Causal histories

al a9 as
® ®
{a1 ]\ b1 ba b3 by
.
C1 c2 C3 Cq
® ®

{c1}
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Example: Causal histories

al a9 as
o ®
{ar I\ b1 by {ai,a2} by by
.
C1 C2 C3 Cq4
o o

{c1}
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Example: Causal histories

al a9 as
o ®
{ar I\ b1 by {ai,a2} by by
.
C1 C2 C3 Cq4
o o

{1} {c1,¢2}
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Example: Causal histories

al a9 as
o ®
{ar I\ b1 by {ai,a2} by by
.
C1 {a,l, bl} Co C3 Cy
o o

{1} {c1,¢2}
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Example: Causal histories

ai a2 as
® ®
{(L1 } bl b2 {a,l, (1,2} bg b4
°
1 {ar1,b1}{%ﬁ’b’ 2 ¢1, €2} 3 4

Process C @
{1} {c1,¢2}
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Example: Causal histories

ai az
Process A o
{ar ]\ b1 by {ar,az} b3

Process B

a {ai, b1}{%5’ by

Process C o @

{1} {c1,¢2}
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Example: Causal histories

ai az

Process A

Process B

®

ai,
b17 b27 b37 b47

C1,C2,C3,C4
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Example: Causal histories

ai az
Process A @
{a1 PN\ b1 by {a1,a2} b3

Process B

Process C o 9

{(11} {(21,(12} ar,
b1, b2, b3, by,

C1,C2,C3,C4

Can we represent causal histories more efficiently?

Annette Bieniusa Programming Distributed Systems Summer Term 2020 28/ 39



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Example: Efficient representation of causal histories

aq as as
3 o
[1,0,0% by by [2,0,0] b3 by
Process B
Proces Bl @ M 10,
® ®
(0,0, 1] [0,0,2] [1,4,4]
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Efficient representation of causal histories

m Vector clock V(e) as efficient representation of C'(e).
m Vector clock is a mapping from processes to natural numbers:
m Example: [p; — 3,p2 — 4,p3 — 1]
m If processes are numbered 1, ..., n, this mapping can be
represented as a vector, e.g. [3, 4, 1]
m Intuitively: p; — 3 means “observed 3 events from process p;’
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Formal Construction

Assume processes are numbered by 1,...,n
Let B = {ek,, €k, - - . } be the events of process k
m Totally ordered: e, — ex,,ex, — €y, - .-

Let C(e)[k] = C(e) N E}, denote the projection of C(E) on
k.

e Cle) = C(e)1]U--- U C(O)ln]

Now, if ex; € C(e)[k], then by definition it holds that

Chys -5 ek; € Cle)[k]
The set C(e)[k] is thus sufficiently characterized by the largest
index of its events, i.e. its cardinality!
Summarize C(e) by an n-dimensional vector V'(e) such that for
k=1,....,n:

V(e)lk] = [C(e) K]

Annette Bieniusa Programming Distributed Systems Summer Term 2020
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Note: Both representations are lattices

A lattice is a partially ordered set in which every two elements have a
unique supremum and a unique infimum.

Operator Causal history  Vector clock

1 0 Ai. 0

A<B ACB Vi. Ali] < BJi]
A>B ADB Vi. A[i] > B[]
AUB AUB Ai. max(Ali], Bi])
ANB ANB Xi. min(Ali], Bi])

m 1: bottom, or smallest element
m AU B: least upper bound, or join, or supremum
m AT B: greatest lower bound, or meet, or infimum
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Tracking causal histories

Each process p; stores current causal history as set of events C;.

= Initially, C; := 0

m On each local event e at process p;, the event is added to the set:
C;:=C;U {e}

m On sending a message m, p; updates C; as for a local event and
attaches the new value of C; to m.

m On receiving message m with causal history C(m), p; updates C;
as for a local event. Next, p; adds the causal history from C(m):

C; == C; U C(m)
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Tracking causal histories

Each process p; stores current causal history as set of events C;.

m Initially, C; := L

m On each local event e at process p;, the event is added to the set:
C;:=C;U {e}

m On sending a message m, p; updates C; as for a local event and
attaches the new value of C; to m.

m On receiving message m with causal history C(m), p; updates C;
as for a local event. Next, p; adds the causal history from C(m):

C; = C; U C(m)
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Vector time

Each process p; stores current causal history as a vector clock V;.

m Initially, Vi[k] :== L

m On each local event, process p; increments its own entry in V; as
follows: V;[i] := V;[i] + 1

m On sending a message m, p; updates V; as for a local event and
attaches new value of V; to m.

m On receiving message m with vector time V' (m), p; increments its
own entry as for a local event. Next, p; updates its current V; by
joining V/(m) and V;:

Vi = Vi[k] U V(m)
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Relating vector times

Let u, v denote time vectors.

mu<viffulk] <ulk]fork=1,...,n
mu<viffu<wvandu#wv
mulviffugdvandv Lu

For two events e and ¢, it holds that

e—e & Vi) < V()

m Proof: By construction.

Annette Bieniusa Programming Distributed Systems Summer Term 2020
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Summary

m Causality important for many scenarios

m Vector clocks:
m Efficient representation of causal histories / happens-before
m How many events from which process?

m Causality not always sufficient
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