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Coordination

Need to manage the interactions and dependencies between
interactions in distributed systems

Data synchronization

Process synchronization
Can be based on actual time or on relative order
Example: No simultaneous access to shared resource
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Time in Distributed Systems

Bild von Gerd Altmann auf Pixabay
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Example: Running make [5]

Timestamps of files used to check what needs to be recompiled

file.c, 22:45:04

file.o, 23:03:34

Computer
file.c

22:45:04

file.o

23:03:34
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Example: Running make [5]

Here, compilation required:

file.c, 22:45:04

file.o, 23:03:34

Computer
file.c

22:45:04

file.o

23:03:34

file.c

23:15:07
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Example: Running make [5]

In a distributed file system where Computer 1 handles source files and
Computer 2 handles object files:

Computer 1

Computer 2

file.c

22:44:34

file.o

22:45:06

file.c

22:45:04
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Goals of this Learning path

In this learning path, you will learn

to name use cases for physical and logical clocks
to describe the principle workings and challenges of constructing
and synchronizing physical clocks
to use Lamport timestamps and vector clocks to describe event
relations
to derive the construction of vector clocks from causal event
histories
to implement logical clocks in Erlang
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Physical clocks
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Timers based on quartz crystal oscillators

Wikipedia, Marcin Andrzejewski /
CC BY-SA 3.0

Computers use quartz crystals as
timers
Oscillates at specific frequency
Used to update the system’s software
clock in CMOS RAM
Consistent within one CPU
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Problems

Oscillators get gradually out-of-sync

Clock skew: difference in time values between different timers

Clock drift at rate of ≈ 10−6s/s or 31.5 s/year
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Solar time as time reference

HorizonEast West

Noon

Solar second is 1/86.400 of solar day
Problem: Period of earth rotation is not stable

⇒ Our days are getting longer!
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Atomic clocks
9.192.631.770 transitions of Cesium-133 atom corresponded to
mean solar second in 1948
Bureau International de l’Heure obtains averages from several
atomic clocks to obtain the International Atomic Time (TAI)
Problem: Diverges slowly from solar time
Universal Coordinated Time (UTC) introduces leap seconds

National Physical Laboratory / Public domain World’s first caesium-133 atomic clock
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Definitions

Let Cp(t) be the time at processor p at time t.
In a perfect world: Cp(t) = t ∀p, t

Accuracy
∀t, p : |Cp(t)− t| ≤ α
Achieved by external synchronization with a reference clock

Precision
∀t, p, q : |Cp(t)− Cq(t)| ≤ π
Achieved by internal synchronization acroos all processors within a
system
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Network Time Protocol (NTP)

p2

p1

T2 T3

T1 T4

Estimation of offset for process p1:

θ = (T2 − T1) + (T3 − T4)
2
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Clock adjustments in NTP

What should p do if θ > 0?
Push its own clock forward to adjust

What should p do if θ < 0?
Time should not go backwards!
Spread slowdown over time interval

NTP used between pairs of servers
Adjust the one that is more accurate, i.e. closer to the reference
clock in tree-like overlay
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Google True Time Service [1]

Offers service in Google’s server infrastructure with guaranteed
bounds
TT.now() yields time value in interval [Tlwb, Tupb] where
Tupb − Tlwb < 6ms
Requires dedicated infrastructure

Time masters with GPS receivers or atomic clocks placed in data
centers
Detect and eliminate faulty time masters
Knowledge about speed of messages across data centers

Used for Spanner, a globally distributed database with
timestamped transactions
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Conclusion

Physical clocks are very useful for measuring durations in a single
processor
Clock drift must be controlled and adjusted to allow for
comparing timestamps based on different physical clocks
Protocols for clock synchronisation

NTP
Google True Time Service
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Logical clocks
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Motivation

Relative order of events ⇒ Causal dependencies and relations

Two prominent approaches: Lamport clocks and vector clocks
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Happens-before relation (revisited)

Three types of events in each process:
Send events
Receive events
Local / internal events

The happens-before relation → on the set of events of a system is the
smallest relation satisfying the following three conditions:

1 If a and b are events in the same process, and a comes before b,
then a→ b.

2 If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a→ b.

3 If a→ c and c→ b, then a→ b.
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Lamport clocks

Idea: Associate time value C(a) with event a such that

a→ b ⇒ C(a) < C(b)

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

1

2

1 2

3

2 3

4 5

3 6
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Lamport clocks[2]
Each process p keeps an event counter lp, initially 0.
When an event that occurs at p that is not a receipt of a message,
lp is incremented by 1:

lp := lp + 1

The value of lp during the execution (after incrementing lp) of
event a is denoted by C(a) (the timestamp of event a).
When a process sends a message, it adds a timestamp to the
message with value of lp at time of sending.
When a process p receives a message m with timestamp lm, p
increments its timestamp to

lp := max(lp, lm) + 1
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Properties of Lamport clocks

Not unique, but can be made unique by pairing with process id
We can show: a→ b ⇒ C(a) < C(b)

Proof by induction over different cases of a→ b
1 a occurs just before b in same process : C(b) = lp + 1 > lp = C(a)
2 a is the send event for receiving event b :
C(b) = max(lp, lm) + 1 > lp = C(a)

3 There exists event c such that a→ c and a→ b. By induction
hypothesis, C(a) < C(c) and C(c) < C(b), hence C(a) < C(b)

But:
C(a) < C(b) 6⇒ a→ b

(see exercise)
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Causality
Fundamental to many problems occurring in distributed computing
The happens-before relation of events is often also called causality
relation [4].
Examples: determining a consistent recovery point, detecting race
conditions, exploitation of parallelism

An event a may causally affect another event b if and only if a→ b.

The happens-before order → indicates only potential causal
relationship.
Tracking whether an event indeed is a cause of another event is
much more involved and requires more complex dependency
analyses.

Annette Bieniusa Programming Distributed Systems Summer Term 2020 24/ 39



Causal Histories[3]

Let Ep denote the set of events occurring at process p and E the
set of all executed events:

E =
⋃

p∈P

Ep

The causal history of an event b ∈ E is defined as

C(b) = {a ∈ E | a→ b} ∪ {b}

Note: Just a different representation of happens-before:

a→ b ⇔ a 6= b ∧ a ∈ C(b)
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Example: Causal history of b3

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

C(b3) = {a1, b1, b2, b3, c1, c2}
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Tracking causal histories with event sets

Each process p stores current causal history as set of events Cp.

Initially, Cp := ∅
On each local event e at process pi, the event is added to the set:

Cp := Cp ∪ {e}

On sending a message m, p updates Cp with a sending event e
and attaches the updated Cp to m.
On receiving message m with causal history C(m), p updates
with a receive event. Next, p adds the causal history from C(m),
yielding:

Cp := Cp ∪ C(m)

Annette Bieniusa Programming Distributed Systems Summer Term 2020 27/ 39



Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4
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Can we represent causal histories more efficiently?
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Example: Efficient representation of causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

[1, 0, 0]

[0, 0, 1]

[2, 0, 0]

[0, 0, 2]

[1, 1, 0] [1, 2, 2] [1, 3, 2]

[1, 4, 4]
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Efficient representation of causal histories

Vector clock V (e) as efficient representation of C(e).
Vector clock is a mapping from processes to natural numbers:

Example: [p1 7→ 3, p2 7→ 4, p3 7→ 1]
If processes are numbered 1, . . . , n, this mapping can be
represented as a vector, e.g. [3, 4, 1]
Intuitively: p1 7→ 3 means “observed 3 events from process p1’ ’
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Formal Construction
Assume processes are numbered by 1, . . . , n
Let Ek = {ek1 , ek2 , . . . } be the events of process k

Totally ordered: ek1 → ek2 , ek2 → ek3 , . . .

Let C(e)[k] = C(e) ∩ Ek denote the projection of C(E) on
process k.

C(e) = C(e)[1] ∪ · · · ∪ C(e)[n]

Now, if ekj
∈ C(e)[k], then by definition it holds that

ek1 , . . . , ekj
∈ C(e)[k]

The set C(e)[k] is thus sufficiently characterized by the largest
index of its events, i.e. its cardinality!
Summarize C(e) by an n-dimensional vector V (e) such that for
k = 1, . . . , n:

V (e)[k] = |C(e)[k]|
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Note: Both representations are lattices
A lattice is a partially ordered set in which every two elements have a
unique supremum and a unique infimum.

Operator Causal history Vector clock

⊥ ∅ λi. 0
A ≤ B A ⊆ B ∀i. A[i] ≤ B[i]
A ≥ B A ⊇ B ∀i. A[i] ≥ B[i]
A tB A ∪B λi. max(A[i], B[i])
A uB A ∩B λi. min(A[i], B[i])

⊥: bottom, or smallest element
A tB: least upper bound, or join, or supremum
A uB: greatest lower bound, or meet, or infimum
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Tracking causal histories

Each process pi stores current causal history as set of events Ci.

Initially, Ci := ∅
On each local event e at process pi, the event is added to the set:
Ci := Ci ∪ {e}
On sending a message m, pi updates Ci as for a local event and
attaches the new value of Ci to m.
On receiving message m with causal history C(m), pi updates Ci

as for a local event. Next, pi adds the causal history from C(m):

Ci := Ci ∪ C(m)
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Vector time

Each process pi stores current causal history as a vector clock Vi.

Initially, Vi[k] := ⊥
On each local event, process pi increments its own entry in Vi as
follows: Vi[i] := Vi[i] + 1
On sending a message m, pi updates Vi as for a local event and
attaches new value of Vi to m.
On receiving message m with vector time V (m), pi increments its
own entry as for a local event. Next, pi updates its current Vi by
joining V (m) and Vi:

Vi := Vi[k] t V (m)
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Relating vector times

Let u, v denote time vectors.

u ≤ v iff u[k] ≤ u[k] for k = 1, . . . , n
u < v iff u ≤ v and u 6= v
u ‖ v iff u 6≤ v and v 6≤ u

For two events e and e′, it holds that

e→ e′ ⇔ V (e) < V (e′)

Proof: By construction.
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Summary

Causality important for many scenarios
Vector clocks:

Efficient representation of causal histories / happens-before
How many events from which process?

Causality not always sufficient
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