
Programming Distributed Systems
Erlang’s design principles

Annette Bieniusa, Albert Schimpf

FB Informatik
TU Kaiserslautern

Summer Term 2020

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 1/ 7



Problem domain

Need to handle very large number of concurrrent activities
Soft real-time: Tasks need to be handled within a specific time
Distributed over several computers
Continuous operations for many years

Maintenance without stoppping the system
Fault tolerance

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 2/ 7



Design goals[1]

Organize system as set of communicating processes
Processes are identifiable by unique, unforgeable Pid
No sharing of data between processes
Supports both multi-processor and distributed systems

Caveat: Might be inefficient if strong data dependencies between
processes

Message passing is assumed to be asynchronous, but ordered and
atomic
Must be able to identify failure in a process (and its potential
reason)

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 3/ 7



Erlang View of the World[1]

1 Everything is a process.
2 Processes are strongly isolated.
3 Process creation and destruction is a lightweight operation.
4 Message passing is the only way for processes to interact.
5 Processes have unique names.
6 If you know the name of a process you can send it a message.
7 Processes share no resources.
8 Error handling is non-local.
9 Processes do what they are supposed to do or fail.

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 4/ 7



Erlang’s Concurrent programming in a Nutshell

Pid = spawn(F)

Pid ! Msg

receive
MsgPattern1 -> Expr1;
MsgPattern2 -> Expr2;
MsgPattern3 -> Expr3;
...
% optional timeout

end

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 5/ 7



The Actor model[2]

Mathematical model of concurrent computation
Erlang’s philosophy is very close to the actor model

Differences: FIFO ordering of message sending, processes are
sequential, . . .

Actor
Computational entity that can

send finite number of messages to other actors it knows
create finite number of new actors
designate what to do with the next message

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 6/ 7



Further reading I

[1] Joe Armstrong. ”Making reliable distributed systems in the
presence of software errors“. Diss. Royal Institute of Technology,
Stockholm, Sweden, 2003. url:
http://erlang.org/download/armstrong thesis 2003.pdf.

[2] Carl Hewitt, Peter Boehler Bishop und Richard Steiger. ”A
Universal Modular ACTOR Formalism for Artificial Intelligence“.
In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. Standford, CA, USA, August 20-23, 1973.
Hrsg. von Nils J. Nilsson. William Kaufmann, 1973, S. 235–245.
url: http://ijcai.org/Proceedings/73/Papers/027B.pdf.

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 7/ 7

http://erlang.org/download/armstrong_thesis_2003.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf

