- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Programming Distributed Systems

Erlang’s design principles

Annette Bieniusa, Albert Schimpf

FB Informatik
TU Kaiserslautern

Summer Term 2020

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020

17

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Problem domain

Need to handle very large number of concurrrent activities
Soft real-time: Tasks need to be handled within a specific time
Distributed over several computers

Continuous operations for many years
m Maintenance without stoppping the system

m Fault tolerance

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020

2/7

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Design goals[1]

Organize system as set of communicating processes

Processes are identifiable by unique, unforgeable Pid

No sharing of data between processes

Supports both multi-processor and distributed systems
m Caveat: Might be inefficient if strong data dependencies between

processes

m Message passing is assumed to be asynchronous, but ordered and
atomic

m Must be able to identify failure in a process (and its potential

reason)

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 3/7

- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Erlang View of the World[1]

Everything is a process.

Processes are strongly isolated.

Process creation and destruction is a lightweight operation.
Message passing is the only way for processes to interact.
Processes have unique names.

If you know the name of a process you can send it a message.
Processes share no resources.

Error handling is non-local.

Processes do what they are supposed to do or fail.

RN EBNENE

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020

4/ 7

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Erlang’s Concurrent programming in a Nutshell

Pid = spawn (F)
Pid ! Msg

receive
MsgPatternl -> Exprl;
MsgPattern2 -> Expr2;
MsgPattern3 -> Expr3;
% optional timeout
end

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 5/ 7

- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

The Actor model[?]

m Mathematical model of concurrent computation
m Erlang’s philosophy is very close to the actor model
m Differences: FIFO ordering of message sending, processes are
sequential, ...

Actor

m Computational entity that can
m send finite number of messages to other actors it knows
m create finite number of new actors
m designate what to do with the next message

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020

6/ 7

-)
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Further reading |

[1] Joe Armstrong. ,Making reliable distributed systems in the

presence of software errors". Diss. Royal Institute of Technology,

Stockholm, Sweden, 2003. URL:
http://erlang.org/download /armstrong_thesis_2003.pdf.
[2] Carl Hewitt, Peter Boehler Bishop und Richard Steiger. , A

Universal Modular ACTOR Formalism for Artificial Intelligence".

In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. Standford, CA, USA, August 20-23, 1973.

Hrsg. von Nils J. Nilsson. William Kaufmann, 1973, S. 235-245.

URL: http://ijcai.org/Proceedings/73/Papers/027B.pdf.

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020

7/7

http://erlang.org/download/armstrong_thesis_2003.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf

