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Problem domain

Need to handle very large number of concurrrent activities
Soft real-time: Tasks need to be handled within a specific time
Distributed over several computers
Continuous operations for many years

Maintenance without stoppping the system
Fault tolerance
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Design goals[1]

Organize system as set of communicating processes
Processes are identifiable by unique, unforgeable Pid
No sharing of data between processes
Supports both multi-processor and distributed systems

Caveat: Might be inefficient if strong data dependencies between
processes

Message passing is assumed to be asynchronous, but ordered and
atomic
Must be able to identify failure in a process (and its potential
reason)
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Erlang View of the World[1]

1 Everything is a process.
2 Processes are strongly isolated.
3 Process creation and destruction is a lightweight operation.
4 Message passing is the only way for processes to interact.
5 Processes have unique names.
6 If you know the name of a process you can send it a message.
7 Processes share no resources.
8 Error handling is non-local.
9 Processes do what they are supposed to do or fail.
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Erlang’s Concurrent programming in a Nutshell

Pid = spawn(F)

Pid ! Msg

receive
MsgPattern1 -> Expr1;
MsgPattern2 -> Expr2;
MsgPattern3 -> Expr3;
...
% optional timeout

end
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The Actor model[2]

Mathematical model of concurrent computation
Erlang’s philosophy is very close to the actor model

Differences: FIFO ordering of message sending, processes are
sequential, . . .

Actor
Computational entity that can

send finite number of messages to other actors it knows
create finite number of new actors
designate what to do with the next message
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