
Programming Distributed Systems
Erlang OTP

Annette Bieniusa, Albert Schimpf

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2020
Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 1/ 8



Error handling in Erlang

Two kinds of errors:

Predictable errors
Wrong user input, connection problem, error reading file
Often handled with special return values, e.g.
read_file(Filename) -> {ok, Binary} | {error,
Reason}
Sometimes handled with exceptions

Unpredictable errors
Software bugs, corrupt state, system resources exhausted
Handled by monitoring whole processes (⇒ supervisors)

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 2/ 8



Linked processes and monitoring

Processes can be linked
A link has no direction
spawn_link spawns a new process and links it to the current

Also: link and unlink functions
If a process terminates, all linked processed are notified:

by default linked process terminates as well (with same reason)
if process_flag(trap_exit, true) is set, a special
message {'EXIT', Pid, Reason} is sent instead

Processes can be monitored
Only one direction
If monitored process terminates, monitoring process receives
message {'DOWN', MonitorRef, Type, Object, Info}

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 3/ 8



Supervisors
Start child processes (with link)
Trap exits
Handle termination of child processes (e.g. restart)
Cleanly terminate applications
Usually organized hierarchical

supervisor

supervisor worker

worker worker worker

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 4/ 8



Generic Supervisor
Just implement callback init/1 to specify the supervisor.
{ok, {SupFlags,[ChildSpec]}}.

SupFlags is a map with the following keys:

strategy: Strategy for restarting children
one_for_one: Restart only terminated process (default value)
one_for_all: Restart all child processes
rest_for_one: Restart all processes, that were started after the
terminating process
simple_one_for_one: Like one_for_one, but all children run
the same code

intensity (MaxR) and period (MaxT)
If more than MaxR number of restarts occur in the last MaxT
seconds, the supervisor terminates all the child processes and then
itself.

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 5/ 8



Supervisor Children
ChildSpec is a a map with the following keys:

id: Name of the child
start: Tuple {Module, Func, Args} to call for initialization
restart:

permanent: always restart
temporary: never restart
transient: restart only after crash

shutdown: How long to terminate children
type: worker or supervisor
modules: [ModuleName] or dynamic (used for managing releases)

Children can be dynamically added and removed:

start_child(SupRef, ChildSpec)

delete_child(SupRef, Id)

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 6/ 8



Supervisor example
-module(example_sup).
-behaviour(supervisor).
-export([start_link/0, init/1]).
-export([stop/0]).

start_link() ->
supervisor:start_link(?MODULE, []).

init(_) ->
ChildSpecList = [child(service1), child(service2)],
{ok,{{intensity => 2, period => 3600}, ChildSpecList}}.

child(Module) ->
{id => Module, start => {Module, start_link, []},
restart => permanent, shutdown => 2000}.

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 7/ 8



Erlang OTP

Generic servers (gen_server)
Generic Supervisors (supervisor)

More features:

Generic state machine behavior gen_statem (different states
accept different messages)
Generic event handling behavior gen_event (multiple event
handlers receive notification for one event)
Applications, releases and release handling

Annette Bieniusa, Albert Schimpf Programming Distributed Systems Summer Term 2020 8/ 8


