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The Need for Distributed Algorithms

Distributed algorithms are at the core of any distributed systems
Implemented as middelware between network and application
Services beyond network protocols (e.g. TCP, UDP)

Group communication
Shared memory abstractions
Replicated state machines
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Overview

Formal models for specifying and analyzing distributed algorithms
Composability of distributed algorithms
The Broadcast Problem

Best-effort broadcast
Reliable broadcast
FIFO broadcast
Causal broadcast
Total-Order broadcast
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Goals of this Learning Path

In this learning path, you will learn

to formally specify safety and liveness properties of several
broadcast problem
to define fault-tolerant algorithms for Best-effort, Reliable, FIFO
and Causal Broadcast in an asynchronous system with reliable
channels
to prove the correctness of these algorithms
to use space-time diagrams to visualize executions
to implement these algorithms in Erlang
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The Broadcast Problem

Informally: A process needs to transmit a message other processes.
broadcast(m) ≈ for each j ∈ {1, . . . , n} : send m to pj
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System model
Asynchronous system

no upper bound on message transfer delay
no failure detectors

Static set of processes Π = {p1, . . . , pn}
crash-stop fault model

Sending and receiving messages through reliable channels (perfect
point-to-point links)

no message loss / creation / modification / duplication
bidirectional
infinite capacity

Messages are uniquely identifiable
e.g. tag with <sender, seq_number>

Only a subset Π′ ⊆ Π receives messages in arbitrary order at distinct,
independent time instants.
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What is the simplest solution that you can think of?

Just go ahead and send the message to everyone, one at a time.
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Specifying the Broadcast Algorithms

Wait. . . How do you specify an algorithm for a process again?

⇒ Deterministic I/O automaton with send/receive operations!

Events: Messages, timers, conditions, . . .
Event-driven interface

Upon Event(arg1, arg2, ...) do:
// local computation
trigger Event(arg1', arg2',...)

Correctness properties
Safety: Nothing bad ever happens
Liveness: Something good eventually happens
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The Anatomy of a Broadcast Algorithm

For the broadcast algorithms:
Upon Init do: ...
Upon Broadcast(m) do: ...
Upon Receive(pk, m) do: ...

You can trigger an event on another layer:
trigger Send(pj, m)
trigger Deliver(pk, m)

There is a special event called Init for initializing the local state.
pj denotes the target process when sending a message
pk denotes the process where the message originated from
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At Process pi

Network layer

Middleware

Application layer

broacast(m) deliver(pk, m)

send(pj , m) receive(pk, m)
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Best-effort Broadcast (BEB): Specification

BEB-Validity: If a correct process pj beb-delivers a message m,
then m has previously been beb-broadcast to pj by some process
pi.

No creation, no alteration of messages
BEB-Integrity: A process beb-delivers a message m at most once.

No duplication of messages
BEB-Termination: For any two correct processes pi and pj , every
message that has been beb-broadcast by pi is eventually
beb-delivered by pj .
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Best-effort Broadcast: Algorithm
Idea:

Just go ahead and send the message to every other process.
When you get one of these messages, you deliver it to the upper
layer.
Intuition: No guarantees if sender crashes

State: --
Upon Init do: --

Upon beb-broadcast(m) do:
forall pj ∈ Π:
trigger send(pj, m)

Upon receive(pk, m) do:
trigger beb-deliver(pk, m)

Network layer

BEB

Application layer

beb-broacast(m) beb-deliver(pk, m)

send(pj , m) receive(pk, m)
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Best-effort Broadcast: Correctness
Why does it work?

BEB-Validity holds because Perfect-Link model guarantees no
creation and there is no other way for messages to appear, only
through beb-broadcast
BEB-Integrity holds because Perfect-Link model guarantees no
duplication
BEB-Termination holds because Perfect-Link model guarantees
reliable delivery

Perfect-Link Model
Reliable Delivery: Considering two correct processes i and j; if i sends a
message m to j, then j eventually delivers m.
No Duplication: No message is delivered by a process more than once.
No Creation: If a correct process j delivers a message m, then m was sent to
j by some process i.
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Visualizing Executions with Space-Time Diagrams

p3

p2

p1
↓ m

m ↑

m ↑

m ↑

↓ m = broadcast message m
↑ m = deliver message m

Annette Bieniusa Programming Distributed Systems 15/ 51



Best-effort Broadcast: Sender crashes

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑
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Limitations of Best-effort Broadcast

What happens if a process fails while sending a message?

If the sender crashes before being able to send the message to all
processes, some process will not deliver the message.
Even in the absence of communication failures!

Let’s try for a reliable version of broadcast!

Guarantees that all or none of the correct nodes gets the message
Even if sender crashes!
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Reliable Broadcast (RB): Specification

RB-Validity: If a correct process pi rb-delivers a message m, then
m has been previously rb-broadcast.
RB-Integrity: A process rb-delivers a message m at most once.
RB-Termination-1: If a correct process pi rb-broadcasts message
m, then pi rb-delivers the message m.
RB-Termination-2: If a correct process pi rb-delivers a message m,
then each correct process rb-delivers m.
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Reliable Broadcast: Scenario 1

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

Not possible under Reliable Broadcast: RB-Termination-2 is violated!

If correct process p2 delivers m, then correct process p3 must also
rb-deliver m.
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Reliable Broadcast: Scenario 2

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

The fact that process p1 does not deliver m2 is not a problem, because
only correct processes are required to deliver their own messages.
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Reliable Broadcast: Scenario 3

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

The fact that no process delivers m2 is not a problem, because process
p1 has crashed and no process delivers m2.
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Reliable Broadcast: Idea!

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑
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Reliable Broadcast: Algorithm

State:
delivered //set of message ids

that have already been delivered

Upon Init do:
delivered <- ∅

Upon rb-broadcast(m) do
mid <- generateUniqueID(m)
trigger beb-broadcast([mid, m])

Upon beb-deliver(pk, [mid, m]) do
if ( mid /∈ delivered ) then

delivered <- delivered ∪ {mid}
trigger rb-deliver(pk, m)
trigger beb-broadcast([mid, m])

Network layer

BEB

RB

Application layer

rb-broacast(m) rb-deliver(pk, m)

beb-broacast(m)
beb-deliver(pk, m)

send(pj , m) receive(pk, m)
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Reliable Broadcast: Correctness

RB-Validity: If a correct process pi rb-delivers a message m, then
m has previously been rb-broadcast.

By BEB-Validity.
RB-Integrity: A process rb-delivers a message m at most once.

By BEB-Integrity and handling the set of delivered messages.
RB-Termination-1: If a correct process pi broadcasts message m,
then pi eventually rb-delivers m.

By BEB-Termination and handling of the set of delivered messages.
RB-Termination-2: If a correct process pi rb-delivers a message m,
then each correct process rb-delivers m.

After rb-delivering m, a correct process forwards m to all processes.
By BEB-Termination and pi being correct, all correct processes will
eventually beb-deliver m and hence rb-deliver it.
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Reliable Broadcast: Scenario 4

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

The fact that m2 has been delivered by faulty p1 and p2 does not
imply that m2 has to be delivered by p3 as well. Yet, this situation is
not desirable, because two processes deliver something and another one
does not.

⇒ Interaction with external world!
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Uniform Reliable Broadcast (URB): Specification

URB-Validity: If a correct process pi urb-delivers a message m,
then m was urb-broadcast to pi by some process pj .
URB-Integrity: A process pi urb-delivers a message m at most
once.
URB-Termination-1: If a correct process pi urb-broadcasts a
message m, then pi eventually urb-delivers m.
URB-Termination-2: If a process pi urb-delivers a message m,
then each correct process pj eventually urb-delivers m.
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An Impossibility Result

n: total number of processes
t: upper bound on the number of processes that can fail
Fail-silent system model: crash-stop + perfect point-to-point links

Theorem
There is no algorithm implementing URB under the fail-silent system
model if a majority of processes can fail, i.e. if t ≥ n/2.
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Proof sketch

By contradiction.

Assume there exists algorithm A that implements URB under the
fail-silent model for t ≥ n/2.
Partition Π = P1 ∪ P2 such that

P1 ∩ P2 = ∅
|P1| = dn/2e and |P2| = bn/2c (|P1| ≥ |P2|)

Consider two executions E1 and E2
Execution E1:

All pi ∈ P2 crash initially, all processes in P1 are correct.
px ∈ P1 issues urb-broacast(m) using algorithm A
Every process in P1 urb-delivers m
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Proof sketch (2)

Execution E2:
No pi ∈ P2 crashes, and none of them issues urb-broadcast.
All processes in P1 are correct.
px ∈ P1 issues urb-broacast(m) using algorithm A
Every process in P1 urb-delivers m and then crashes
Now, m is lost and can’t be urb-delivered by processes in P2,
because perfect-link model requires sender and receiver to be
correct for reliable delivery.

E1 and E2 are indistiguishable by algorithm A.
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Uniform Reliable Broadcast for t < n/2: Algorithm

State:
delivered //set of message ids that have already been delivered
pending // set of messages to be delivered
ack // map mid to received acknowledgments

Upon Init do:
delivered, pending <- ∅
∀mid: ack[mid] = ∅

Upon urb-broadcast(m) do
mid <- generateUniqueID(m)
pending <- pending ∪ {mid}
trigger beb-broadcast([self, mid, m])
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Uniform Reliable Broadcast for t < n/2: Algorithm (2)

Upon beb-deliver(pk, [pj, mid, m]) do
ack[mid] <- ack[mid] ∪ {k}
if ( (pj, mid, m) /∈ pending ) then

pending <- pending ∪ (pj, mid, m)
trigger beb-broadcast([pj, mid, m])

Upon exists (pj, mid, m) ∈ pending
with ack[mid] > n/2 and mid /∈ delivered

delivered <- delivered ∪ mid

trigger urb-deliver(pj, m)
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Uniform Reliable Broadcast: Correctness

Assume majority of correct processes (t < n/2)
If a process urb-delivers, it got acknowledgement from majority
In this majority, at least one process p must be correct
p ensures that all correct processes beb-deliver m
These correct processes (majority!) will ack and urb-deliver the
message
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Resilience

Defined by maximum number of faulty processes an algorithm can
handle
Algorithm for URB under fail-silent model has resilience < n/2
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Problem: Message ordering

Given the asynchronous nature of distributed systems, messages
may be delivered in any order.
Some services, such as replication, need messages to be delivered
in a consistent manner, otherwise replicas may diverge.
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FIFO Order

Bob

Alice
delete(photo) friend(Bob)

↑ ↑Information leak

FIFO Property
If a process p broadcasts a message m before the same process broadcasts
another message m′, then no correct process q delivers m′ unless it has
previously delivered m.

broadcastp(m)→ broadcastp(m′)⇒ deliverq(m)→ deliverq(m′)
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Causal Order

Carol

Bob

Alice
Split with Mike :( Reunited!

Oh no!

Causality Property
If the broadcast of a message m happens-before the broadcast of some
message m′, then no correct process delivers m′ unless it has previously
delivered m.

broadcastp(m)→ broadcastq(m′)⇒ deliverr(m)→ deliverr(m′)
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Total Order

Total Order Property
If correct processes p and q both deliver messages m, m′, then p
delivers m before m′ if and only if q delivers m before m′.

deliverp(m)→ deliverp(m′)⇒ deliverq(m)→ deliverq(m′)
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Message ordering: Quizzzzz

p3

p2

p1
↓ m1 m1 ↑

m1 ↑

m1 ↑↓ m2

m2 ↑

m2 ↑

m2 ↑

Is this allowed under FIFO Order, Causal Order, Total Order?
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(Reliable) FIFO Broadcast (FIFO): Specification

All properties from reliable broadcast
FIFO delivery: If a process fifo-broadcasts m and later m′, then no
process fifo-delivers m′ unless it already delivered m.
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FIFO-Broadcast: Algorithm
State:
next // array mapping process id to seq numer
seq // sequence numbers for broadcast messages
pending // messages to be delivered

Upon Init do:
next <- [0, ..., 0]
seq <- 0
pending <- ∅

Upon fifo-broadcast(m) do
mid <- seq++ // generate next seq number
trigger rb-broadcast([mid , m])

Upon rb-deliver(pk, [mid, m]) do
if mid = next[pk] then

trigger fifo-deliver(pk, m)
next[pk]++
while exists (pk, nid, n) ∈ pending with nid = next[pk] do
trigger fifo-deliver(pk, n)
next[pk]++
pending <- pending \ {(pk, nid, n)}

else pending <- pending ∪ {(pk, mid, m)}
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(Reliable) Causal Broadcast (RCO): Specification

All properties from reliable broadcast
Causal delivery: No process pi delivers a message m′ unless pi has
already delivered every message m such that m→ m′.

Idea
Each messages carries pastm, an ordered list of messages that
causally precede m
When a process rb-delivers m,

it co-delivers first all causally preceding messages in pastm

it co-delivers m
avoiding duplicates using delivered
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Causal Broadcast (RCO): Algorithm 1 (No-waiting)
State:

delivered //set of messages ids that were already rco-delivered
past // ordered list

Upon Init do:
delivered <- ∅
past <- []

Upon rco-broadcast(m) do
mid <- generateUniqueID(m)
trigger rb-broadcast([mid , past, m])
past <- past ++ [(self, mid, m)] // append at the end

Upon rb-deliver(pk, [mid, pastm, m]) do
if ( mid /∈ delivered ) then

for (pj, nid, n) : pastm do // from old to recent
if (nid /∈ delivered ) then
trigger rco-deliver(pj, n)
delivered <- delivered ∪ {nid}
if (pj, nid, n) /∈ past then

past <- past ++ [(pj, nid, n)]
trigger rco-deliver(pk, m)
delivered <- delivered ∪ {mid}
if (pk, mid, m) /∈ past then

past <- past ++ [(pk, mid, m)]
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Causal Broadcast: Scenario 1

p3

p2

p1
m1 ↑

m1 ↑

m1 ↑ m2 ↑

m2 ↑

m2 ↑
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Causal Broadcast - Algorithm 1: Correctness

Validity follows directly from rb-broadcast
Integrity follows from rb-broadcast and the check before
rco-delivering messages from past m
Termination follows directly from rb-broadcast and the fact that
no waiting occurs

Every message is rco-delivered once rb-delivered
Causal delivery

Each message m carries its causal past
Causal past is in order delivered before m
Proof by induction on trace prefix

Initial state
For every delivery
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Remarks

Message from causal past of m are delivered before message m
(causal delivery)
Message id’s could be reused for rb-broadcast
Size of messages grows linearly with every message that is
broadcast since it includes the complete causal past
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Idea: Garbage collect the causal past

If we know when a process fails (i.e., under the fail-stop model),
we can remove messages from the causal past.
When a process rb-delivers a message m, it rb-broadcasts an
acknowledgement message to all other processes.
When an acknowledgement for message m has been rb-delivered
by all correct processes, m is removed from past
N2 additional ack messages for each application message
Typically, acknowledgements are grouped and processed in batch
mode

⇒ Requires still unbounded messages sizes
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Causal Broadcast (RCO): Algorithm 2 [1]
State:

pending //set of messages that cannot be delivered yet
VC // vector clock

Upon Init do:
pending <- ∅
forall pi ∈ Π do: VC[pi] <- 0

Upon rco-broadcast(m) do
trigger rco-deliver(self, m)
trigger rb-broadcast(VC, m)
VC[self] <- VC[self] + 1

Upon rb-deliver(pk, VCm, m) do
if ( pk 6= self ) then

pending <- pending ∪ {(pk, VCm, m)}
while exists (q, VCmq, mq) ∈ pending with VC ≥ VCmq do

pending <- pending \ {(q, VCmq, mq)}

trigger rco-Deliver(q, mq)
VC[q] <- VC[q] + 1
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Limitations of Causal Broadcast
Example: Replicated database handling bank accounts

Initially, account A holds 1000 Euro.
User deposits 150 Euro, triggers broadcast of message
m1 = 'add 150 Euro to A'

Concurrently, bank initiates broadcast of message
m2 = 'add 2% interest to A'

Diverging state because processes can observe messages in
different order

Bob

Alice
add(150)

interest(0.02)
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Outlook: Total-order broadcast (aka Atomic Broadcast)

All processes deliver their messages in the same order
Replicated services

Multiple processes execute the same sequence of commands
Replicated State Machines (RSM)

Impossibile under our assumed system model
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Summary
Composability of distributed algorithms
Correctness proofs based on properties of underlying level +
algorithmic properties
Different variants of solution to the Broadcast Problem

Best-effort broadcast
Reliable only if sender is correct

Reliable broadcast
Reliable independent of whether sender is correct

Uniform reliable broadcast
Considers also behavior of failed nodes

FIFO broadcast
Reliable broadcast with FIFO delivery order

Causal broadcast
Reliable broadcast with causal delivery order

Total-order broadcast
Reliable and same order of delivery at all nodes
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