
Programming Distributed Systems
Modelling and validating distributed systems with TLA+

Annette Bieniusa

FB Informatik
TU Kaiserslautern

Annette Bieniusa Programming Distributed Systems 1/ 33

TLA+: Specification language

Source: https://commons.wikimedi
a.org/wiki/File:Leslie Lamport.jpg

Formal language for describing and
reasoning about distributed and
concurrent systems
TLA+ is a model-oriented language

Based on mathematical logic and
set theory plus temporal logic TLA
(temporal logic of actions)
Supported by the TLA Toolbox, an
IDE that integrates model-checker
and theorem prover

Annette Bieniusa Programming Distributed Systems 2/ 33

https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg
https://commons.wikimedia.org/wiki/File:Leslie_Lamport.jpg

Overview

Example: 1-bit clock
TLA+ language constructs
Safety and liveness properties

Executions and Traces
Fairness

Example: Specifying broadcast algorithms

Annette Bieniusa Programming Distributed Systems 3/ 33

Goals of this Learning Path

In this learning path, you will learn how

to read TLA+ specifications
to encode specify safety and liveness properties in TLA
to check specifications and find counterexamples
to model broadcast algorithms in TLA+

Annette Bieniusa Programming Distributed Systems 4/ 33

Example: 1-bit Clock

Annette Bieniusa Programming Distributed Systems 5/ 33

First example: 1-bit Clock

A behavior is a sequence of states, where a state is an assignment
of values to variables.
Possible behavior of 1-bit Clock:

b = 1 -> b = 0 -> b = 1 -> b = 0 -> ...

b = 0 -> b = 1 -> b = 0 -> b = 1 -> ...

Formal description:

State variable: b

Initial predicate: b = 1 \/ b = 0

Next-step action (b' denotes the variable at the next state)
\/ (b = 0) /\ (b' = 1)

\/ (b = 1) /\ (b' = 0)

Meaning: IF b = 0 THEN b' = 1 ELSE b' = 0

Annette Bieniusa Programming Distributed Systems 6/ 33

1-bit Clock: TLA Specification
-------- MODULE OneBitClock ----------

VARIABLE b

Init == (b = 0) \/ (b = 1)

Next == \/ b = 0 /\ b' = 1
\/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

======================================

The initial state satisfies Init

Every transition satisfies Next or leaves b unchanged
[Next]_<> == Next \/ (b' = b)

b' denotes value of b after transition

Annette Bieniusa Programming Distributed Systems 7/ 33

1-bit Clock: Type invariant
-------- MODULE OneBitClock ----------
VARIABLE b

Init == (b = 0) \/ (b = 1)

TypeInv == b \in {0,1}

Next == \/ b = 0 /\ b' = 1
\/ b = 1 /\ b' = 0

Spec == Init /\ [][Next]_<>

THEOREM Spec => []TypeInv

======================================

TLA+ is untyped to keep math formulas simple
Theorem here specifies an invariant property

Annette Bieniusa Programming Distributed Systems 8/ 33

Computing all possible behaviors
State graph is a directed graph G
Algorithm sketch:

1 Put the set of all initial states into G
2 For every state s ∈ G, compute all possible states t such that

s→ t is a possible step in a behaviour
3 For every state t found in step 2 with t /∈ G, add an edge from s

to t
4 Repeat from 2 until no new states or edges can be added to G

Annette Bieniusa Programming Distributed Systems 9/ 33

TLC: State model checker for TLA+

Exhaustive breath-first search of all reachable states
Finds (one of) the shortest path to the property violation

Diameter Number of states in the longest path of G with no
repeated states

States found Total number of states it examined in step 1 and 2
Distinct states Number of states that form the set of nodes of G

Queue size Number of states s in G for which step 2 has not yet
been done

Annette Bieniusa Programming Distributed Systems 10/ 33

Let’s check our 1-bit clock specification!

Annette Bieniusa Programming Distributed Systems 11/ 33

More on TLA+

Annette Bieniusa Programming Distributed Systems 12/ 33

Structure of TLA+ Modules - Part 1

------------------- MODULE M ---------------------------
EXTENDS M1,..., Mn
* Incorporates the declarations, definitions, assumptions,
* and theorems from the modules named M1,...,Mn into the
* current module.

CONSTANTS C1,..., Cn
* Declares the C1,..., Cn to be constant parameters.

ASSUME P
* Asserts P as an assumption.

VARIABLES x1,..., xn
* Declares x1,..., xn as variables.

Annette Bieniusa Programming Distributed Systems 13/ 33

Structure of TLA+ Modules - Part 2
TypeInv == exp * Declares the types of variables x1,..., xn.

Init == exp * Initializes variables x1,..., xn.

F(x1,..., xn) == exp
* Defines F to be an operator such that
* F(e1,...,en) equals exp with each identifier xk replaced by ek.

f[x \in S] == exp
* Defines f to be the function with domain S such that
* f[x] = exp for all x in S.
* The symbol f may occur in exp, allowing a recursive definition.

THEOREM P
* Asserts that P can be proved from the definitions and
* assumptions of the current module.
==

Annette Bieniusa Programming Distributed Systems 14/ 33

Propositional and Predicate Logic

TRUE
FALSE

∼(a /\ b \/ c)
a => b
Next == b' = 0

\A x \in {1, 2, 3, 4, 5} : x >= 0
\E x \in {1, 2, 3, 4, 5} : x % 2 = 0

Annette Bieniusa Programming Distributed Systems 15/ 33

Functions

[i \in {2,3,5,9} |-> i - 7]
= (2 :> -5 @@ 3 :> -4 @@ 5 :> -2 @@ 9 :> 2)

DOMAIN [i \in {2,3,5,9} |-> i - 7]
= {2, 3, 5, 9}

[[i \in {2,3,5,9} |-> i - 7][3] = -4

[{2,4} -> { "a", "b" }]
= { (2 :> "a" @@ 4 :> "a"), (2 :> "a" @@ 4 :> "b"),

(2 :> "b" @@ 4 :> "a"), (2 :> "b" @@ 4 :> "b") }

[[i \in {2,3,5,9} |-> i - 7] EXCEPT ![2]= 12]
= (2 :> 12 @@ 3 :> -4 @@ 5 :> -2 @@ 9 :> 2)

Annette Bieniusa Programming Distributed Systems 16/ 33

Records

[node |-> "n1", edge |-> "e1"]

[node |-> "n1", edge |-> "e1"].edge = "e1"

[nodes : {"n1","n2"}, edges : {"e1","e2"}]

[node |-> "n1", edge |-> "e1"] EXCEPT !.edge = "xpto"]
= [node |-> "n1", edge |-> "xpto"]

Annette Bieniusa Programming Distributed Systems 17/ 33

Tuples

<<"ana", 32, 37495>>

<<"ana",32>>[2] = 32

<<"ana",32>>[1] = "ana"

{1,2,3} \times {"a","b"}
= { <<1, "a">>, <<1, "b">>, <<1, "c">>,

<<2, "a">>, <<2, "b">>, <<2, "c">>,
<<3, "a">>, <<3, "b">>, <<3, "c">> }

Annette Bieniusa Programming Distributed Systems 18/ 33

Sets

S = {1, 2, 3}

S /= {1, 2, 3} S # {1, 2, 3}

x \in S
x \notin S

S \union {1, 2, 3}

{ n \in {1, 2, 3, 4, 5} : n % 2 != 0 } = {1, 3, 5}
{ 2*n+1 : n \in {1, 2, 3, 4, 5} } = {3, 5, 7, 9, 11}

UNION { {1, 2}, {2, 3}, {3, 4} } = {1, 2, 3, 4}
SUBSET {1, 2} = {{}, {1}, {2}, {1, 2}}

Annette Bieniusa Programming Distributed Systems 19/ 33

Sequences
-------- MODULE Sequences -------------------------
LOCAL INSTANCE Naturals

Seq(S) == UNION {[1..n -> S] : n \in Nat}

Len(s) == CHOOSE n \in Nat : DOMAIN s = 1..n

s \o t == [i \in 1..(Len(s) + Len(t)) |->
IF i \leq Len(s) THEN s[i] ELSE t[i-Len(s)]]

Append(s, e) == s \o <<e>>

Head(s) == s[1]

Tail(s) == [i \in 1..(Len(s)-1) |-> s[i+1]]

SubSeq(s, m, n) == [i \in 1..(1+n-m) |-> s[i+m-1]]
===

Annette Bieniusa Programming Distributed Systems 20/ 33

CHOOSE operator

CHOOSE x \in S : P(x)
* Equals some value v in S such that P(v) equals true, if such a

value exists.
* Its value is unspecified if no such v exists.

CHOOSE x \in {1, 2, 3, 4, 5} : TRUE
CHOOSE x \in {1, 2, 3, 4, 5} : x % 2 = 0

Annette Bieniusa Programming Distributed Systems 21/ 33

Specifying Safetey and Liveness Properties with
Temporal Logic

Annette Bieniusa Programming Distributed Systems 22/ 33

Temporal Properties

Examples:
Does an algorithm always terminate?
If disrupted, will a system return to a stable state eventually?

Amir Pnueli introduced in 1977 the use of temporal logic for
describing system behaviors
TLA is a variant tailored for systems

Action formulas describe states and state transitions
Temporal formulas describe state sequences (traces)

Temporal operators
[] F : F is always true
<> F : F is eventually true
F ∼> G : F leads to G

Annette Bieniusa Programming Distributed Systems 23/ 33

[] F : F is always true

Formula []F, where F is a state predicate, is true iff F is true in
every state of the behavior

F

s0

F

s1

F

s2

F

s3

Recall: Formula [][A]_<<e>>, where A is an action and e a state
function, is true iff every successive step is an [A]_<<e>> step

s0 s1 s2 s3A A A A

Annette Bieniusa Programming Distributed Systems 24/ 33

<> F : F is eventually true

Formula <>F, where F is a state predicate, is true iff F will be true
in some state
P is not always false

<>P == ∼[](∼P)

s0 s1 s2 s3 s4

∼ F ∼ F ∼ F F arbitrary

Annette Bieniusa Programming Distributed Systems 25/ 33

F ∼> G: F leads to G

Whenever F is true, then G is eventually true
F ∼> G == [](F => <>G)

s0 s1 s2 s3 sn

∼ F∧ ∼ G F∧ ∼ G ∼ G G

Every request leads to a response: request ∼> response

Annette Bieniusa Programming Distributed Systems 26/ 33

Examples

[]<>F : Infinitely often ⇒ Progress
At all times, F is true then or at some later time
e.g. the traffic light is green infinitely often

<>[]F : Eventually always ⇒ Stability
Eventually, F becomes true and remains true from then on
e.g. eventually all messages are delivered

Annette Bieniusa Programming Distributed Systems 27/ 33

Fairness

Annette Bieniusa Programming Distributed Systems 28/ 33

Fairness

To prove liveness properties, it is necessary to make some
assumptions about the system environment
If a transition is “often enough” enabled, it should at some point
happen (fairness)
TLA has two forms of fairness:

Strong fairness for action A: SF_<<e>> (A)

Weak fairness for action A: WF_<<e>> (A)

Annette Bieniusa Programming Distributed Systems 29/ 33

Weak Fairness WF_<<e>> (A)

(<>[] ENABLED <A>_<<e>>) => ([]<> <A>_<<e>>)

If A ever becomes forever enabled, then an A step must eventually
occur
Weak fairness of A asserts that an A step must eventually occur if
A is continuously enabled

“continuously” = without interruption
Example: Traffic light

If the traffic light is weakly fair, it will eventually turn green, the
red, etc.
But if the car waiting for the light is only weakly fair, it might
never move!

Annette Bieniusa Programming Distributed Systems 30/ 33

Strong Fairness SF_<<e>> (A)

([]<> ENABLED <A>_<<e>>) => ([]<> <A>_<<e>>)

If A is infinitely often enabled, then infinitely many A steps occur
Strong fairness of A asserts that an A step must eventually occur
if A is continually enabled

“continually” = repeatedly, possible with interruptions
Example: Traffic light

A strongly fair car will eventually move even if the light keeps
switching
Beware: Requires the light to be weakly fair!

Annette Bieniusa Programming Distributed Systems 31/ 33

In practice

Temporal properties are powerful, but can be confusing
Using adhoc formulas is error prone
Use uniform way with fairness properties

Checking liveness properties is slow
Invariant checks can be parallelized by TLC
Restrict your model to small instances

Liveness properties are often not needed, but having TLA+ as
tool is handy!

Annette Bieniusa Programming Distributed Systems 32/ 33

Annette Bieniusa Programming Distributed Systems 33/ 33

	Example: 1-bit Clock
	Let's check our 1-bit clock specification!
	More on TLA+
	Specifying Safetey and Liveness Properties with Temporal Logic
	Fairness

