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Motivation

Replication is a core problem in distributed systems[2, Sec
15.1-15.3]
Why do we want to replicate services or data?

Performance: If there are many clients issuing operations, a single
process might not be enough to handle the whole load with
adequate response time. Further, keeping data close to clients
reduces the network latency when handling requests.
Availability: Despite server failures and network partitions, clients
can still interact with the system (potentially operating with stale
or conflicting data).
Fault-tolerance: Despite faults, the systems continues to behave
correctly; e.g. it does not loose information.

We can replicate computations and state (focus of this lecture)
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Goals of this Learning Path

In this learning path, you will learn how

to classify replication strategies
to model replicated data storage systems as replicated state
machines
to reduce total-order broadcast to consensus (and vice versa)
to argue about the impossibility of reaching consensus in
asynchronous systems with crash-faults
to use quorum systems to implement consensus algorithms
to implement fault-tolerant consensus for replicated state
machines using the Raft algorithm
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State Machine Replication
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State Machine Replication[10]

Generic model for replicated services
A state machine has a state S and a set of
commands/requests/operations Ops = {Op1, Op2, . . . } that

potentially take some input and/or
transform the state deterministically and/or
return some response

Clients invoke operations from the set Ops on the service
The process implementing the state machine is replicated,
i.e. there are multiple copies / instances of the same process.
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Replication Algorithm

A replication algorithm is responsible for managing the multiple
replicas of a state machine

under a given fault model
under a given synchronization model

In essence, the replication algorithm will enforce properties on the
effects of operations observed by clients given the evolution of the
system (potentially including the evolution the clients).
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Desirable properties: Transparency + Consistency
Clients should not be aware that multiple replicas (might) exist.
When interacting with the system, a client should only observe a
single logical state.
The behavior of this logical state must be in accordance with its
correctness specification.

Client

S1

Replica 1

S2

Replica 2

S3

Replica 3

Service

Response

Op

⇒ Need to restrict the state that can be observed by a client!
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Option 1: Coordinating proxy

Client

S1

Replica 1

S2

Replica 2

S3

Replica 3

Proxy

Service

Response

Op
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Option 2: One of the replicas interacts with the client

Client S1

Replica 1
S2

Replica 2

S3

Replica 3

Service

Response

Op
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Replication strategies

Active Replication: Operations are executed by every replica.
Passive Replication: Operations are executed by a single replica,
results are shipped to other replicas.

Synchronous Replication: Replication takes place before the
client gets a response.
Asynchronous Replication: Replication takes place after the
client gets a response.

Single-Master: A specific replica receives operations from clients.
Multi-Master: Any replica can process operations from clients.
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Active Replication

All replicas execute operations.
State is continuously updated at every replica

Lower impact of a replica failure
Can only be used when operations are deterministic

i.e. not dependent on non-deterministic input, such as local time or
randomly generated values

If operations are not commutative (i.e., execution of the same set
of operations in different orders lead to different results), then all
replicas must agree on the order in which operations are executed.
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Passive Replication

Required when operations depend on non-deterministic data or
inputs
Load across replicas is not balanced

Only one replica effectively executes an operation and computes
the result
Other replicas only observe results to update their local state

Annette Bieniusa Programming Distributed Systems 12/ 93



Synchronous Replication

Client

Replica A

Replica B

Replica C

Strong durability guarantees
Tolerates faults of N − 1 servers

Request will be served as fast as the slowest server
Response time is bound by network latency
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Asynchronous replication
Client

Replica A

Replica B

Replica C

One replica immediately sends back response and propagates the
updates later
Client does not need to wait
Tolerant to network latencies
Problem: Data loss if replica A goes down before forwarding the
update!
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Single-master (Master-slave, Primary-backup, Log
Shipping)

Only a single replica, called the master/leader/coordinator,
processes operations that modify the state.
Other replicas can process client operations that only observe the
state.
Problems:

Clients might observe stale values
Susceptible to lost updates or incorrect updates if nodes fail at
inopportune times

When the master fails, another node has to take over the role of
master.
If two processes believe themselves to be the master, safety
properties might be violated.
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Multi-master Systems

Any replica can process any operation (i.e, both read and update
operations).
All replicas have the same role ⇒ Better load balancing
Problem: Divergence

Multiple replicas might attempt to perform conflicting operations
at the same time
Requires coordination (e.g. distributed locks or other coordination
protocols)
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On the Equivalence of Total-order Broadcast and
Consensus

Annette Bieniusa Programming Distributed Systems 17/ 93



Preventing divergence in multi-master systems
Idea: Execute all operations in the same order on all replicas

⇒ Total-order broadcast (aka Atomic broadcast)

Properties of Total-Order Broadcast
Validity: If a correct process to-broadcasts message m, then it
eventually to-delivers m.
Agreement: If a correct process to-delivers message m, then all
correct processes eventually to-deliver m.
Integrity: For any message m, every process to-delivers m at most
once, and only if m was previously to-broadcast.
Total order: If some process to-delivers message m before message
m′, then every process to-delivers m′ only after it has to-delivered
m.
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Implementing Atomic Broadcast
We rely on the consensus abstraction to implement total-order broadcast.

Each process pi has an initial value vi (propose(vi)).
All processors have to agree on common value v that is the initial value
of some pi (decide(v)).

Properties of Consensus
Uniform Agreement: Every correct process must decide on the same
value.
Integrity: Every correct process decides at most one value, and if it
decides some value, then it must have been proposed by some process.
Termination: All processes eventually reach a decision.
Validity: If all correct processes propose the same value v, then all
correct processes decide v.
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Total-Order Broadcast using Consensus: Idea

Every process executes sequence of consensus problems, numbered
1, 2, . . .
Initial value for each consensus for process p is the set of
messages received by p that have not been to-delivered, yet
msgk is the set of messages decided by consensus numbered k

Each process to-delivers the messages in msgk before the messages
in msgk+1

More than one message may get to-delivered by one instance of
consensus!

Need to ensure deterministic order to-delivery for messages in
msgk
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Atomic Broadcast using Consensus: Algorithm
State:
k // consensus number
delivered // messages to-delivered by process
received // messages received by process

Upon Init do:
k <- 0;
delivered <- ∅;
received <- ∅;

Upon to-broadcast(m) do
trigger rb-broadcast(m);

Upon rb-deliver(q, m) do
if m /∈ received then received <- received ∪ {m};

Upon received \ delivered 6= ∅ do
k <- k + 1;
undelivered <- received \ delivered;
propose(k, undelivered);

wait until decide(k, msgk)

∀ m in msgk in deterministic order do trigger to-deliver(m)

delivered <- delivered ∪ msgk
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Equivalence of Total-Order Broadcast and Consensus

As the previous algorithm shows, we can implement Total-Order
Broadcast using Consensus.
Similarly, we can build Consensus using Total-Order Broadcast (⇒
Exercise).

Consensus and Total-Order Broadcast are equivalent problems in a
system with reliable channels.
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Consensus in the Asynchronous System Model
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The Consensus Problem in “Real Life”
Assume you and your two other flatmates want to hire a fourth person
for your shared apartment.

Process:

Each of you separately interviews the candidate
Afterwards, you pass each other messages under the door
regarding your vote
If the vote is unanimous, the new flatmate may move in
Otherwise, you look for a new candidate

But:

You or your flatmates might leave the apartment for an
unspecified amount of time

When can you inform a candidate about your common decision?
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Question

How do you solve consensus in

an asynchronous model
with crash-stop
and (at least) one failing process?
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Intuition:

In an asynchronous system, a process p cannot tell whether a
non-responsive process q has crashed or is just slow
If p waits, it might do so forever
If p decides, it may find out later that q came to a different
decision
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The FLP Theorem [4]

There is no deterministic protocol that solves consensus in an
asynchronous system in which a single process may fail by crashing.

2001 Dijkstra prize for the most influential paper in distributed
computing
Proof Strategy

Assume that there is a (deterministic) protocol to solve the
problem
Reason about the properties of any such protocol
Derive a contradiction ⇒ Done :)

Annette Bieniusa Programming Distributed Systems 28/ 93



FLP: System model

We will use here a slightly different model that simplifies the proof.

N ≥ 2 processes which communicate by sending messages
Without loss of generality, binary consensus (i.e. proposed values
are either 0 or 1)
Message are stored in abstract message buffer

send(p,m) places message m in buffer for process p
receive(p,m) randomly removes a message m from buffer and
hands it to p or hands “empty message” ε to p

This model describes an asynchronous message delivery with
arbitrary delay
Every message is eventually received (i.e. no message loss)
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FLP: Configurations
A configuration C is the internal state of all processes +
contents of message buffer.
In each step, one process p

performs a receive(p,m), updates its state deterministically, and
potentially sends messages (event e)
or crashes

An execution is a (possibly infinite) sequence of events, starting
from some initial configuration C0.
A schedule S is a finite sequence of events.

C0

... ... ... ...... ... ... ...... ... ... ...
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FLP: Disjoint schedules are commutative

Lemma 1
Disjoint schedules are commutative.

Schedules S1 and S2 are both applicable to configuration C
S1 and S2 contain disjoint sets of receiving processes
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FLP: Assumptions
All correct nodes eventually decide.
In every config, decided nodes have decided on the same value
(here: 0 or 1).

C0

...

1 1

...

0 1

...

1 0

...

0 0

0-decided configuration: A configuration with decision for 0 on
some process
1-decided configuration: A configuration with decision for 1 on
some process
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FLP: Bivalent Configurations
0-valent configuration: A config in which every reachable decided
configuration is a 0-decide
1-valent configuration: A config in which every reachable decided
configuration is a 1-decide

Bivalent configuration: A configuration which can reach a
0-decided and 1-decided configuration

C0

...

1 1

...

0 1

...

1 0

...

0 0
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FLP: Bivalent Initial Configuration

Lemma 2
Any algorithm that solves consensus with at most one faulty process
has at least one bivalent initial configuration.

This means that there is some initial configuration in which the
decision is not predetermined by the proposed values, but is a
result of the steps taken and the occurrance of failures.
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Proof idea for two processes A and B

Assume that all executions are predetermined and there is no
bivalent initial configuration
If A and B both propose 0:

All executions must decide on 0, including the solo execution by A
If A and B both propose 1:

All executions must decide on 1, including the solo execution by B
If A proposes 0 and B proposes 1:

Solo execution by A decides on 0
Solo execution of B decides on 1

⇒ Bivalent initial configuration!
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Proof idea for N processes
Assume that all executions are predetermined and there is no
bivalent initial configuration
For N processes, there are 2N different initial configurations for
binary consensus
Arrange configurations in a line such that adjacent initial
configurations only differ by proposed value for one process
There must exist an adjacent pair C0,0 and C0,1 of 0-valued and
1-valued configurations

Let’s assume they differ in the proposed value of process p
Assume that p crashes (i.e. doesn’t make steps in the execuctions)
Both initial configs will lead to the same configs when applying
schedules without p

⇒ C0,0 and C0,1 are actually bivalent
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FLP: Staying Bivalent
Lemma 3
Given any bivalent config C and any event e applicable in C, there
exists a reachable config C ′ where e is applicable, and e(C ′) is bivalent.

C
bivalent

... C
bivalent

...

... C’

...
bivalent

e e

e

If you delay a pending event for some number of steps, there will
be a configuration in which you trigger this event and still end up
in a bivalent state.
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FLP: Proof of Theorem

1 Start in an initial bivalent config. [This configuration must exist
according to Lemma 2.]

2 Given the bivalent config, pick an event e that has been applicable
longest.

Pick the path which takes the system to another config where e is
applicable (might be empty).
Apply e, and get a bivalent config [applying Lemma 3].

3 Repeat Step 2.

Termination violated.
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What now?

In reality, scheduling of processes is rarely done in the most
unfavorable way.
The problem caused by an unfavorable schedule is transient, not
permanent.
Re-formulation of consensus impossibility:

Any algorithm that ensures the safety properties of consensus can be
delayed indefinitely during periods with no synchrony.
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Circumventing FLP in Theory

Obviously, by relaxing the specification of consensus . . .

Idea 1: Use a probabilistic algorithm that ensures termination with
high probability.
Idea 2: Relax on agreement and validity, e.g. by allowing
disagreement for transient phases.
Idea 3: Only ensure termination if the system behaves in a
synchronous way.
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Summary

Replication is one of the key problems in distributed systems[1].
Characterization of replication schemes

active/passive
synchronous/asynchronous
single-/multi-master

Problem: Divergence of replicas
Total-order Broadcast and Consensus
FLP Theorem: Impossibility of Consensus in asynchronous
distributed systems with crash-stop
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Quorum-based Systems
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Consensus in Parliament

!
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Motivation

A quorum is the minimum number of members of an assembly
that is necessary to conduct the business of this assembly.
In the German Bundestag at least half of the members (355 out of
709) must be present so that it is empowered to make resolutions.

Idea
Can we apply this technique also for reaching consensus in distributed
replicated systems?
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Problem revisited: Register replication
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Registers

A register stores a single value.
Here: Integer value, initially set to 0.

Processes have two operations to interact with the register: read
and write (aka: put/get).
Processes invoke operations sequentially (i.e. each process
executes one operation at a time).

Replication: Each process has its own local copy of the register,
but the register is shared among all of them.
Values written to the register are uniquely identified (e.g, the id of
the process performing the write and a timestamp or monotonic
value).
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Properties of a register

Liveness: Every operation of a correct process eventually completes.

Safety: Every read operation returns the last value written.

What does last mean?
Each operation has an start-time (invocation) and end-time (return).
Operation A precedes operation B if end(A) < start(B).

We also say: operation B is a subsequent operation of A
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Different types of registers (1 writer, multiple readers)
(1,N) Safe register
A register is safe if every read that doesn’t overlap with a write returns
the value of the last preceding write. A read concurrent with writes
may return any value.

(1,N) Regular register
A register is regular if every read returns the value of one of the
concurrent writes, or the last preceding write.

(1,N) Atomic register
If a read of an atomic register returns a value v and a subsequent read
returns a value w, then the write of w does not precede the write of v.
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Different types of registers (multiple writers and readers)

(N,N) Atomic register
Every read operation returns the value that was written most recently
in a hypothetical execution, where every operation appears to have
been executed at some instant between its invocation and its
completion (linearization point).

Equivalent definition: An atomic register is linearizable with respect to
the sequential register specification.
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Example execution 1

Is this execution possible for a safe/regular/atomic register?

Valid for all!
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Example execution 2

Is this execution possible for a safe/regular/atomic register?

Valid for all!
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Example execution 3

Is this execution possible for a safe/regular/atomic register?

Not valid!
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Example execution 4

Is this execution possible for an (N,N) atomic register?

Write operations are concurrent, we have to define linearization points
to arbitrate their order.
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Example execution 5

Is this execution possible for an (N,N) atomic register?

Not a valid execution, there are no linearization points that explain the
return of those two reads.
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Your turn!
We use the replicated regular register to build a replicated key-value
store.
5 processes replicate one register; at most 2 replicas can fail (i.e. the
majority processes will not fail).
Assumptions: Writers assigns a unique sequence number to each write
(i.e. given two written values you can determine the most recent one)

Define an algorithm for reading and writing the register value!
No update should be lost even if 2 of the 5 replicas fail
Every read returns the value of one of the potential concurrent writes, or
the last preceding write.
How many acknowledgements from the replicas does a writer need to be
sure that the write succeeded despite potential replica fault?
How many replies does a reader need to obtain the last written value?
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Intuition

We wait for at least 3 processes to reply to the writer; this ensures
that our writes will be successful even if 2 replicas fail.
But when I read, how can I be sure that I am reading the last
value?
If I read from just one replica, I might have missed the last
write(s).

A reader needs to read from at least 3 processes; this ensures that
it will read at least from one process that knows the last write.
If several different values are returned when reading, we just need
to figure out which one is the last write (⇒ sequence number!).

Annette Bieniusa Programming Distributed Systems 56/ 93



Why is this correct?

Liveness: Operations always terminate because you only wait for a
number of processes that will never fail (since there are at most 2
failures).
Safety: Any write and read operation will intersect in one correct
process. The read will either return the previous or the currently
written value in case of concurrency.

This intersection is the basis for quorum-based replication algorithms.
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Quorum system

Definition
Given a set of replicas P = {p1, p2, . . . , pN}, a quorum system
Q = {q1, q2, . . . , qM} is a set of subsets of P such that for all
1 ≤ i, j ≤M, i 6= j:

qi ∩ qj 6= ∅

Examples: P = {p1, p2, p3}
Q1 = {{p1, p2}, {p2, p3}, {p3, p1}}
Q2 = {{p1}, {p1, p2, p3}, {p1, p3}}

A quorum system Q is called minimal if ∀qi, qj ∈ Q : qi 6⊂ qj
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Definition: Read-Write Quorum systems

Definition
Given a set of replicas P = {p1, p2, . . . , pN}, a read-write quorum
system is a pair of sets R = {r1, r2, . . . , rM} and
W = {w1, w2, . . . , wK} of subsets of P such that for all corresponding
i, j:

ri ∩ wj 6= ∅

Choose quorums w, r ⊆ P with |w| = W and |r| = R such that W + R > N
Typically, reads and writes are always sent to all N replicas in parallel and the
first responding replicas determine than the quorum for the operation
Parameters W and R determine how many nodes need to reply before we
consider the operation to be successful.
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Quorum Types: Read-one/write-all

Replication strategy based on a read-write quorum system

Read operations can be executed in any (and a single) replica
(R = 1).
Write operations must be executed in all replicas (W = N).

Properties:

Very fast read operations
Heavy write operations
If a single replica fails, then write operations can no longer be
executed successfully.
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Quorum Types: Read-all/write-one

Replication strategy based on a read-write quorum system

Read operations can be executed in all replicas (R = N).
Write operations must be executed in one replica (W = 1).

Properties:

Very fast write operations
Slow read operation
If a single replica fails, then read operations can no longer be
executed successfully.

Annette Bieniusa Programming Distributed Systems 61/ 93



Quorum Types: Majority

Replication strategy based on a quorum system

Every operation (either read or write) must be executed across a
majority of replicas (e.g. bN

2 c+ 1).

Properties:

Best fault tolerance possible from a theoretical point of view
Can tolerate f faults with N = 2f + 1

Read and write operations have a similar cost
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Quorum Types: Grid
Processes are organized (logically) in a grid to determine the quorums
Example:

Write Quorum: One full line + one element from each of the lines below
that one
Read Quorum: One element from each line
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Properties:

Size of quorums grows sub-linearly with the total number of
replicas in the system: O(

√
N)

This means that load on each replica also increases sub-linearly
with the total number of operations.

It allows to balance the dimension of read and write quorums (for
instance to deal with different rates of each type of request) by
manipulating the size of the grid (i.e, making it a rectangle)
Complex
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How can we compare the different schemes?[8]
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Load
The load of a quorum system is the minimal load on the busiest
element.
An access strategy Z defines the probability PZ(q) of accessing a quorum q ∈ Q
such that

∑
q∈Q

PZ(q) = 1.

The load of an access strategy Z on a node p is defined by

LZ(p) =
∑

q∈Q,p∈q

PZ(q)

The load on a quorum system Q induced by an access strategy Z is the maximal
load on any node:

LZ(Q) = max
p∈P

LZ(p)

The load of a quorum system Q is the minimal load on the busiest element:

L(Q) = min
Z

LZ(Q)

Annette Bieniusa Programming Distributed Systems 66/ 93



Resilience and failure probability

If any f nodes from a quorum system Q can fail such that there is still
a quorum q ∈ Q without failed nodes, then Q is f-resilient.

The largest such f is the resilience R(Q).

Assume that every node is non-faulty with a fixed probability (here:
p > 1/2). The failure probability F (Q) of a quorum system Q is the
probability that at least one node of every quorum fails.
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Analysis

The majority quorum system has the highest resilience (bN−1
2 c);

but it has a bad load (1/2). Its asymptotic failure probability
(N →∞) is 0.

One can show that for any quorum system S, the load
L(S) ≥ 1/

√
N .

Can we achieve this optimal load while keeping high resilience and
asymptoatic failure probability of 0?
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Quorum Types: B-Grid[8]
Consider N = dhr nodes.
Arrange the nodes in a rectangular grid of width d, and split the grid into h
bands of r rows each.
Each element is represented by a square in the grid.
To form a quorum take one “mini-column” in every band, and add a
representative element from every mini-column of one band ⇒ d + hr − 1
elements in every quorum.
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Case study: Dynamo
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Amazon Dynamo[3]

Distributed key-value storage
Dynamo was one of the first successful non-relational storage
systems (a.k.a. NoSQL)

Data items accessible via some primary key
Interface: put(key, value) & get(key)

Used for many Amazon services, e.g. shopping cart, best seller
lists, customer preferences, product catalog, etc.

Several million checkouts in a single day
Hundreds of thousands of concurrent active sessions – Available as
service in AWS (DynamoDB)

Uses quorums to achieve partition- and fault-tolerance
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Ring architecture
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Consistent hashing of keys with “virtual nodes” for better load
balancing
Replication strategy:

Configurable number of replicas (N)
The first replica is stored regularly with consistent hashing
The other N − 1 replicas are stored in the N − 1 successor nodes
(called preference list)

Typical Dynamo configuration: N = 3, R = 2,W = 2
But e.g. for high performance reads (e.g., write-once, read-many):
R = 1,W = N
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Sloppy quorums

If Dynamo used a traditional quorum approach, it would be
unavailable during server failures and network partitions, and
would have reduced durability even under the simplest of
failure conditions. To remedy this, it does not enforce strict
quorum membership and instead it uses a “sloppy quorum”;
all read and write operations are performed on the first N
healthy nodes from the preference list, which may not always
be the first N nodes encountered while walking the consistent
hashing ring. [3]
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Why are sloppy quorums problematic?

Assume N = 3, R = 2,W = 2 in a cluster of 5 nodes (A, B, C, D,
and E)
Further, let nodes A, B, and C be the top three preferred nodes;
i.e. when no error occurs, writes will be made to nodes A, B, and
C.
If B and C were not available for a write, then a system using a
sloppy quorum would write to D and E instead.
In this case, a read immediately following this write could return
data from B and C, which would be stale because only A, D, and
E would have the latest value.

Annette Bieniusa Programming Distributed Systems 75/ 93



Dynamos’ solution: Hinted handoff

If the system needs to write to nodes D and E instead of B and C,
it informs D that its write was meant for B and informs E that its
write was meant for C.
Nodes D and E keep this information in a temporary store and
periodically poll B and C for availability.
Once B and C become available, D and E send over the writes.
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Summary

Quorums are essential building blocks for many applications in
distributed computing (e.g. replicated databases).
Essential property of quorum systems is the pairwise non-empty
intersection of quorums.
Majority quorums are intuitive and comparatively easy to
implement, but far from optimal.
Small quorums are not necessarily better

Compare loads and availability instead of size!

Annette Bieniusa Programming Distributed Systems 77/ 93



Protocols for Replicated State Machines
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Protocols for Replicated State Machines
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Motivation: Replicated state-machine via Replicated Log

All figures in these slides are taken from [9].
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Replicated log ⇒ State-machine replication
Each server stores a log containing a sequence of state-machine
commands.
All servers execute the same commands in the same order.
Once one of the state machines finishes execution, the result is
returned to the client.

Consensus module ensures correct log replication
Receives commands from clients and adds them to the log
Communicates with consensus modules on other servers such that
every log eventually contains same commands in same order

Failure model: Nodes may crash, recover and rejoin, delayed/lost
messages
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Practical aspects

Safety: Never return in incorrect result despite network delays,
partitions, duplication, loss, reordering of messages
Availability: Majority of servers is sufficient

Typical setup: 5 servers where 2 servers can fail
Performance: (Minority of) Slow servers should not impact the
overall system performance
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Approaches to consensus

Leader-less (symmetric)
All servers are operating equally
Clients can contact any server

Leader-based (asymmetric)
One server (called leader) is in charge
Other server follow the leader’s decisions
Clients interact with the leader, i.e. all requests are forwarded to
the leader
If leader crashes, a new leader needs to be (s)elected
Quorum for choosing leader in next epoch (i.e. until the leader is
suspected to have crashed)
Then, overlapping quorum decides on proposed value ⇒ Only
accepted if no node has knowledge about higher epoch number
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Classic approaches I

Paxos[6]
The original consensus algorithm for reaching agreement on a
single value
Leader-based
Two-phase process: Promise and Commit

Clients have to wait 2 RTTs
Majority agreement: The system works as long as a majority of
nodes are up
Monotonically increasing version numbers
Guarantees safety, but not liveness
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Classic approaches II

Multi-Paxos
Extends Paxos for a stream of a agreement problems
(i.e. total-order broadcast)
The promise (Phase 1) is not specific to the request and can be
done before the request arrives and can be reused
Client only has to wait 1 RTT

View-stamped replication (revisited)[7]
Variant of SMR + Multi-Paxos
Round-robin leader election
Dynamic membership
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The Problem with Paxos

[. . . ] I got tired of everyone saying how difficult it was to
understand the Paxos algorithm.[. . . ] The current version is
13 pages long, and contains no formula more complicated
than n1 > n2. [5]

Still significant gaps between the description of the Paxos algorithm
and the needs or a real-world system

Disk failure and corruption
Limited storage capacity
Effective handling of read-only requests
Dynamic membership and reconfiguration
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In Search of an Understandable Consensus Algorithm:
Raft[9]

Yet another variant of SMR with Multi-Paxos
Became very popular because of its understandable description

In essence
Strong leadership with all other nodes being passive
Dynamic membership and log compaction
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Consensus Algorithms in Real-World Systems

Paxos made live - or: How Google uses Paxos
Chubby: Distributed coordination service built using Multi-Paxos
and MSR

Spanner: Paxos-based replication for hundreds of data centers;
uses hardware-assisted clock synchronization for timeouts
Apache Zookeeper: Distributed coordination service using Paxos

Typically used as naming service, configuration management,
synchronization, priority queue, etc.

etcd: Distributed KV store using Raft
Used by many companies / products (e.g. Kubernetes, Huawei)

RethinkDB: JSON Database for realtime apps
Storing of cluster metadata such as information about primary
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Summary

Consensus algorithms are an important building block in many
applications
Replicated log via total-order broadcast
Raft as alternative to classical Paxos

Leader election
Log consistency
Commit
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