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KIDS OUT OF CONTROL?

Inconsistency might be the problem!
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Overview

What is consistency?
How can we define and distinguish between different notions of
consistency?
How can we keep replicated data consistent under concurrent
updates?
What implications does a consistency model have for an
application?
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Goals of this Learning Path

In this learning path, you will learn

to compare formal declarative models for different types of
consistency
to relate sequential and concurrent semantics of register and set
data types
to translate space-time diagrams to event graphs
to distinguish different conflict resolution strategies of replicated
data types
to explain the pros and cons of state- vs operation-based
replication strategies for replicated data types
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Consistency
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Consistency
Distributed systems: “Consistency” refers to the observable
behaviour of a system (e.g. a data store).
Consistency model defines the correct behavior when interacting
with the system.

Remark: Consistency in Database systems
The distributed systems and database communities also use the
term “consistency”, but with different meanings.

C in ACID
Refers to the property that application code is sequentially safe

What we discuss here, is closer to “isolation”

All material and graphics in this section are based on material by Sebastian Burkhardt
(Microsoft Research)[2] and the survey by Paolo Viotti and Marko Vukolic [5].
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Example: Shared Register

Operations on registers
rd()→ v
wr(v)→ ok

System architecture:

x = 5C1

C2

C3

read()

5

write(3)

ok

read()

3
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Implementation 1: Single-copy Register

x : 5C1

C2

C3

read()

5

write(3)

ok

read()

3

Single replica of shared register
Forward all read and write requests
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Implementation 2: Epidemic Register

C1

C2

C3xA : (5, t1)

xB : (3, t2)

xC : (3, t2)

sync sync

sync

read()

5

write(3)

ok

read()

3

Each replica stores a timestamped value
Reads return the currently stored value; writes update this value,
stamped with current time (e.g. logical clock)
At random times, replicas send stored timestamped value to arbitrary
subset of replicas
When receiving timestamped value, replica replaces locally stored value
if incoming timestamp is later
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Question

Can clients observe a difference between the two implementations
(single-copy vs. epidemic)?

Assumptions:

Asynchronous communication
Fairness of transport
“Randomly” generated values

Notions:

Single-Copy Register: Linearizability
Epidemic Register: Sequential Consistency
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Consistency for key-value stores

C1

C2

C3xA : (vxA
, tA)

yA : (vyA
, t′A)

xB : (vxB
, tB)

yB : (vyB
, t′B)

xC : (vxC
, tC)

yC : (vyC
, t′C)

sync

sync

When generalized to key-value stores (i.e. collection of registers), the
epidemic variant guarantees

Eventual Consistency (if sending a randomly selected tuple in each
message)
Causal Consistency (if sending all tuples in each message).
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Consistency model

Required for any type of storage (system) that processes
operations concurrently.
Unless the consistency model is linearizability (= single-copy
semantics), applications may observe non-sequential behaviors
(often called anomalies).
The set of possible behaviors, and conversely of possible
anomalies, constitutes the consistency model.
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Consistency specifications
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What is a replicated shared object / service?

Examples: REST Service, file system, key-value store, counters,
registers, . . .
Formally specified by a set of operations Op and either

a sequential semantics S, or
a concurrent semantics F

Annette Bieniusa Programming Distributed Systems 14/ 76



Sequential semantics
S : Op∗ ×Op→ V al

Sequence of all prior operations represents current state (with
default initial value)
Operation to be performed
Returned value

Example: Register

S(ε, rd()) = undef (read without prior write is undefined)

S(wr(2) · wr(8), rd()) = 8 (read returns last value written)

S(rd() · wr(2) · wr(8), wr(3)) = ok (write always returns ok)

But what about the semantics under concurrency?
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Histories

A history records all the interactions between clients and the system:

Operations performed
Indication whether operation successfully completed and
corresponding return value
Relative order of concurrent operations
Session of an operation (corresponds to client / connection)
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Concurrent semantics

Classically, histories are represented as sequences of calls and returns[3].
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Event graphs

(E, op, rval, rb, ss)

set of client operation events

wr(1)

rd()

rd()

wr(3)

rd()

labels event with operation

:ok

:1

:1

:ok

:3

labels event with the return
value

“returns-before” partial order
= client-observable order
of operations; orders non-
overlapping intervals

Session A
Session B

Session C

“same session” equivalence
class; partitions events into ses-
sions
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Event graphs

An event graph represents an execution of a system.

Vertices: events
Attributes: label for vertices with information on the
corresponding event (e.g. which operation, parameters, return
values)
Relations: orderings or groupings of events

Definition
An event graph G is a tuple (E, d1, . . . , dn) where E ⊆ Events is a
finite or countably infinite set of events, and each di is an attribute or
relation over E.
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Histories as event graphs

A history is an event graph (E, op, rval, rb, ss) where

op : E → Op associate operation with an event
rval : E → V alues ∪ {∇} are return values (∇ denotes that
operation never returns)
rb is returns-before order
ss is same-session relation
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Hands-on: Timeline diagram vs. event graph

w(1):ok

w(2):ok

rd():2 rd():1
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Solution: Timeline diagram vs. event graph
wr(1):ok wr(2):ok rd():2

rd():1

rb
rb

Event graph G = (E, op, rval, rb) with

E = {a, b, c, d}
op = {(a,wr(1)), (b, wr(2)), (c, rd()), (d, rd())}

rval = {(a, ok), (b, ok), (c, 2), (d, 1)}
rb = {(b, d), (c, d)}
ss = {(a, a), (b, b), (c, c), (c, d), (d, d), (d, c)}
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When is a history correct / valid?

Common approach: Require linearizability
Insert linearization points between begin and end of operation
Semantics of operations must hold with respect to these
linearization points
Linearization points serves as justification / witness for a history

Here: Consistency semantics beyond linearizability!
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Specifying the Consistency Semantics I
An execution is an account of what happened when executing the
implementation
A history defines the observable client interaction
A specification is a “test” on histories

But how do we specify such a “test” / predicate?

Operational consistency model
Provides an abstract reference implementation whose behaviors
provide the specifications
Well-studied methodology for proving correctness (e.g. simulation
relations or refinement)
Problem: Typically close to specific concrete implementation
technique
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Specifying the Consistency Semantics II

An abstract execution is an account of the “essence” of what
happened

Applicable to many implementations
Correctness criterion: History is valid if consistent with an abstract
execution satisfying some consistency guarantees

A concrete execution is the account of what happened when
executing an actual implementation

Axiomatic consistency model
Uses logical conditions on histories to define valid behaviors
Allows to combine different aspects (here: consistency guarantees)
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Decomposing abstract executions

Essence of what happened can be tracked down to two basic
responsibilities of the underlying protocol:

1 Update Propagation: All operations must eventually become
visible everywhere

2 Conflict Resolution: Conflicting operations must be arbitrated
consistently
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Visibility

Relation that determines the subset of operations “visible” to (and
potentially influencing) an operation
Describes relative timing of update propagation and operations

a
vis−−→ b

Effect of operation a is visible to the client performing b
Updates are concurrent if they are not ordered by visibility (i.e. if
they cannot observe each other’s effect)
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Arbitration

Used for resolution of update conflicts (i.e. concurrent updates
that do not commute)

a
ar−→ b

Total order on operations
Often solved in practice by using timestamps
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Definition: Abstract Executions
An abstract execution is an event graph (E, op, rval, rb, ss, vis, ar)
such that

(E, op, rval, rb, ss) is a history
vis is acyclic
ar is a total order

inc():ok2

rd():24

inc():ok1

rd():13

rb, vis rb, visvis

Arbitration order: inc():ok1 → inc():ok2 → rd():13 → rd():24
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Return Values in Abstract Executions

An abstract execution (E, op, rval, rb, ss, vis, ar) satisfies a sequential
semantics S if

rval(e) = S(op(e), vis−1.sort(ar))

Observed state = visible operations sorted by arbitration

Annette Bieniusa Programming Distributed Systems 30/ 76



Consistency guarantee

A consistency guarantee is a predicate or property of an abstract
execution.

Consistency model is collection of all the guarantees needed;
histories must be justifiable by an abstraction execution that
satisfies them all.
Ordering guarantees ensure that the order of operations is
preserved (under certain conditions).
Transactions ensure that operation sequences do not become
visible individually.
Synchronization operations can enforce ordering selectively.
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Important consistency models: Overview

Linearizability = SingleOrder ∧ Realtime ∧ RVal

SequentialConsistency = SingleOrder ∧ ReadMyWrites ∧ RVal

CausalConsistency = EventualVisibility ∧ Causality ∧ RVal

BasicEventualConsistency = EventualVisibility ∧
NoCircularCausality ∧ RVal

RVal refers to ReturnValueConsistency
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Eventual Consistency (Quiescent Consistency)

In any execution where the updates stop at some point (i.e. where
there are only finitely many updates), then eventually (i.e. after some
unspecified amount of time) each session converges to the same state.

Often used in replicated data stores
In essence: Convergence
It says nothing about

when the replicas will converge
what the state is that they will converge to
what is allowed in the meantime
when there is no phase of quiescence

Very weak guarantee ⇒ Difficult to program against
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Eventual visibility

An abstract execution satisfies EventualVisibility if all events become
eventually visible.

∀e ∈ E : |{e′ ∈ E|(e rb−→ e′) ∧ (e 6 vis−−→ e′)}| <∞
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Session guarantees

When issuing multiple operations in sequence within a session, we
usually expect additional properties (session consistency)
Session Order: so = rb ∩ ss
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Read My Writes

Post(“Hi”):ok

rd():-

Alice’ session

It would be confusing if Alice would not see her own message.
Fix: Require that session order implies visibility

so ⊆ vis
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Monotonic Reads

Post(“Hi”):ok

rd():“Hi”

rd():-

Alice

Bob

It would be confusing if Bob read Alice’ message, but when he
later read again, he would not see the message anymore
Fix: Require that visibility is monotonic with respect to session
order

vis ◦ so ⊆ vis
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Consistent Prefix
1 Post(“Hi”):ok 2 rd():“Hey”

rd():“Hey”

rd():“Hi”

Alice Bob

Charlie

Alice and Bob post concurrent different values, and the write of Bob is
arbitrated after the update of Alice.
Charlie reads and sees Bob’s message; then later, in the same session, he
only sees the “earlier” message of Alice.
Fix: Require that remote operations become visible after all operations
that precede them in arbitration order

ar ◦ (vis ∩ ¬ss) ⊆ vis
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Causality Guarantees

Axiomatic definition of happens-before relation:

hb = ((rb ∩ ss) ∪ vis)+

Captures session order and transitive closure of session order and
visibility

NoCircularCausality: acyclic(hb)
CausalVisibility: hb ⊆ vis
CausalArbitration: hb ⊆ ar
Causality: CausalVisibility ∧ CausalArbitration
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Causal Consistency

Strongest model that can implemented in such a way as to be
available even under (network) partitions
Causal consistency implies all session guarantees with the
exception of Consistent Prefix.

CausalConsistency = EventualVisibility ∧ Causality ∧ RVal
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Strong Models
Ensure a single global order of operations that determines both
visibility and arbitration
SingleOrder:

∃E′ ⊆ rval−1(∇) : vis = ar \ (E′ × E)

What this means: Arbitration and visibility are the same except for
subset E′ that represents incomplete operations that are not
visible to any other operation.
Assuming, arbitration order corresponds to (perfect global)
timestamps, the SingleOrder implies that:

1 An operation can only see operations with earlier timestamps.
2 An operation must see all complete operations with earlier

timestamps.
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Linearizability vs. Sequential Consistency

Linearizability requires RealTime:

rb ⊆ ar

Sequential consistency requires ReadMyWrites (restricted to
sessions)

To observe the difference between the two, clients must be able to
communicate over some “side channel” that allows them to
observe real time ordering.
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Conclusion

In this lecture: Consistency for single operations
Other aspect: Consistency for groups of operations (transactions)
Open problem: Can we safely mix and match different types of
consistency?
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Conflict-free Replicatd Data Types
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Motivation

So far, we resolved conflicting updates (i.e. non-commutative updates)
simply by sequencing operations using arbitration order (ar).

But sometimes, applications

do not want to depend on a global order such as ar
want to be made aware of conflicts
want to resolve conflicts in a specific way
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Example: Multi-value register

Standard Register (Last-Writer-Wins)

1 wr(“foo”):ok

2 wr(“bar”):ok

3 rd():“bar”

Multi-Value Register

wr(“foo”):ok

wr(“bar”):ok

rd():{“foo”, “bar”}
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How can we determine the state?

Sequence-based conflict resolution
1 wr(“foo”):ok

2 wr(“bar”):ok

3 rd():“bar”

visible state = sequence of visible ope-
rations, sorted by arbitration order

General conflict resolution

wr(“foo”):ok

wr(“bar”):ok

rd():{“foo”, “bar”}

visible state = subgraph of visible
operations
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Formal model

Before:
S : Op∗ ×Op→ V al

“Current state” Op∗ = Sequence of all prior operations

Now:
F : Op× C → V al

Operation context C = Event graph of visible operations
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Revisited: Sequential semantics for registers

S : Op∗ ×Op→ V al

S(wr(2) · wr(8), rd()) = 8 (read returns last value written)

S(ε, rd()) = undef

S(rd() · wr(2) · wr(8), wr(3)) = ok (write always returns ok)
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Operation Context

An operation context is a finite event graph C = (E, op, vis, ar).

Events in E capture what prior operations are visible to the
operation that is to be performed.
Models the situation at a single replica
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Concurrent semantics for Multi-Value Register

F : Op× C → V al

Fmvr(wr(x), C) = ok

Fmvr(rd(), C) = {x| exists e in C such that op(e) = wr(x)
and e is vis-maximal in C}
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Quizz: What do the read ops return?
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Return values in Abstract Executions revisited
Previous lecture:

An abstract execution (E, op, rval, rb, ss, vis, ar) satisfies a sequential
semantics S if

rval(e) = S(op(e), vis−1.sort(ar))

Read-value consistency can also be defined wrt concurrency
semantics

An abstract execution A = (E, op, rval, rb, ss, vis, ar) satisfies a
concurrent semantics F if

rval(e) = F (op(e), A |vis−1(e),op,vis,ar)
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Conflict-free Replicated Data Types (CRDTs) [4]

Same API as sequential abstract data type, but with concurrency
semantics
Catalogue of CRDTs

Register (Laster-writer wins, Multi-value)
Set (Grow-Only, Add-Wins, Remove-Wins)
Flags
Counter (unlimited, restricted/bounded)
Graph (directed, monotone DAG)
Sequence / List
Map, JSON

If operations are commutative, same semantics as in sequential
execution
Otherwise, need arbitration to resolve conflict
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Specification: Replicated counter

Operation inc commutes ⇒ No conflict resolution policy is needed
Value returned depends only on E and op, but not on vis and ar

Fctr(rd(), (E, op, vis, ar)) = |{e′ ∈ E | op(e′) = inc}|
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Semantics of a replicated Set or How to design a CRDT
Sequential specification of abstract data type Set S:

{true} add(e) {e ∈ S}

{true} rmv(e) {e /∈ S}

The following pairs of operations are commutative (for two
elements e, f and e 6= f):

{true} add(e); add(e) {e ∈ S}
{true} add(e); add(f) {e, f ∈ S}
{true} rmv(e); rmv(e) {e /∈ S}
{true} rmv(e); rmv(f) {e, f /∈ S}
{true} add(e); rmv(f) {e ∈ S, f /∈ S}

⇒ For these ops, the concurrent execution should yield the same result
as executing the ops in any order.
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What are the options regarding a concurrency semantics
for add(e) and rmv(e)?

The operations add(e) and rmv(e) are not commutative
{true} add(e); rmv(e) {e /∈ S}
{true} rmv(e); add(e) {e ∈ S}

Options for conflict-resolution strategy when concurrently
executing add(e) and rmv(e)

add-wins: e ∈ S
remove-wins: e /∈ S
erroneous state (i.e. escalate the conflict to the user)
last-writer wins (i.e. define arbitration order through total order,
e.g., by adding totally- ordered timestamps)
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Set Semantics

Standard Set

1 add(1):ok

2 add(1):ok

3 rem(1):ok

4 rd():{}

Add-Wins Set

add(1):ok

add(1):ok

rem(1):ok

rd():{1}
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Formal Semantics for the Add-Wins Set

Faws(add(x), C) = ok

Faws(rmv(x), C) = ok

Faws(rd(), C) = {x| exists e in C such that op(e) = add(x)
and there exists no e’ in C such that
op(e′) = rmv(x) and e vis−−→ e′}
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Sets with “interesting” semantics

Grow-only set
Convergence by union on element set
No remove operation

2P-Set (Wuu & Bernstein PODC 1984)
Set of added elements + set of tombstones (= removed elements)
Add/remove each element once
Problem: Violates sequential spec

c-set (Sovran et al., SOSP 2011)
Count for each element how often it was added and removed
Problem: Violates sequential spec
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Take a break!

A Mathematician, a Biologist and a Physicist are sitting in a street cafe
watching people going in and coming out of the house on the other
side of the street. First they see two people going into the house. Time
passes. After a while they notice three persons coming out of the house.

The Physicist: “The measurement wasn’t accurate.”.

The Biologist: “They have reproduced”.

The Mathematician: “If now exactly one person enters the house then
it will be empty again.”
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CRDTs: Strong Eventual Consistency

Eventual delivery: Every update is eventually applied at all correct
replicas
Termination: Update operation terminates
Strong convergence: Correct replicas that have applied the same
update have equivalent state
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How to implement CRDTs
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State-based CRDTs: Counter

Synchronization by propagating replica state
Updates must inflate the state
State must form a join semi-lattice wrt merge

⇒ Merge must be idempotent, commutative, associative

Annette Bieniusa Programming Distributed Systems 65/ 76



Join-semilattice

A join-semilattice S is a set that has a join (i.e. a least upper
bound) for any non-empty finite subset:

For all elements x, y ∈ S, the least upper bound (LUB) x t y exists.

A semilattice is commutative, idempotent and associative.
A partial order on the elements of S is induced by setting x ≤ y
iff x t y = y.
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Examples
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Operation-based CRDTs

Concurrent updates must commute
Requires reliable causal delivery for CRDTs with non-commutative
operations
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Example: Add-wins Set (Observed-remove Set)
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Optimized version of Add-wins Set

Possible to garbage-collect the tombstone after remove
Trick: Assuming causal delivery, a removed element will never be
re-introduced (with the same id)[1]
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Challenges with CRDTs
Meta-data overhead for CRDTs that require causal contexts

Version vectors track concurrent modifications
Problematic under churn (i.e. when nodes come and go)

Monotonically growing state with state-based approach
Infeasible for inherently growing data types such as sets, maps, lists
with prevalent add
When removing elements, often tombstones are required for
conflict resolution that relies on concurrency information
Requires garbage collection of tombstones when updates become
causally stable

Composability
CRDTs can be recursively nested (e.g. Maps, Sequences) or
atomically updated in transactions
Which type of composability is preferable? What is the semantics
of the composed entity?
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Delta-based CRDTs

State-based CRDTs suffer from monotonically growing state
(lattice!)
Op-based CRDTs require reliable causal delivery
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Adoption of CRDTs in industry
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Conclusion

CRDTs provide Strong Eventual Consistency (sometimes even
more)
Properties of good conflict resolution

Don’t loose updates/information!
Deterministic (independent of local update order)
Semantics close to sequential version

Meta-data overhead can be substantial
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