
Projects Summer Term 2025

Supervisors: Alexander Dinges, Cass Alexandru, Michael Youssef, Sebastian Schloßer

Kick-off: 30.04.2025

1



Organization

2



Schedule

• Kick-off: Wednesday, 30.04.2025, 13:45 - 15:15, room 36-265
• Final presentations: presumably Friday, 25.07.2025, time and room TBA

Mandatory attendance!
• Regular meetings with your supervisor

3



Project Teams

• Four topics to choose from
• One or two teams per topic (working independently)
• Four or five students per team (collaborating)

4



Agenda

• We present you the topics
• You (physically) go to the supervisor whose topic you would like to work on
• There you form teams and exchange details with team members & supervisor

5



Data Management for ExClaim

Supervisor: Sebastian Schloßer

6



About ExClaim

• Exercise management
◦ Students
◦ Groups (same exercise session)
◦ Teams (collaborate on homework)
◦ Homework submission
◦ Homework grading
◦ Automatic group assignment

• Exam management
• Automatic test execution

7



Remote Test Executor (RTE)

• Docker
• Consistent environment
• No risks for tutors
• Fast feedback (for students and as guidance while grading)
• Can execute test cases without providing the source code to students

8



History (1)

• Softech Achievement Tracking System (STATS)
◦ Manage students, groups, teams, exams
◦ No submission (on paper or via e-mail)
◦ No automatic group assignment

• Optimus: Automatic group assignment
• ExClaim & RTE: For submission & testing

Three separate systems!
• Users management only in STATS
• Linking data via student id

9



History (2)

• Integrate all features in one system
• Optimize database layout
• Use code-generation for type-safe database access
• Simplify building the system
• New Frontend in development

10



Your Task (1): Data Generation

• Initialize Database with dummy data
• Facilitates development
• For demonotration purposes
• (Cannot use real data!)

11



Your Task (2): Data Export

• Retrieve all data for a single course (for offline evaluation)
• Retrieve all data for a single user (to fulfill GDPR requests)
• Retrieve essential data for a single course (Overall homework points per student,

exam assessment, but no uploads or single sheet points)
• Format: JSON or XML

12



Your Task (3): Data Deletion

• Delete entire course
• from database (recursively all dependent data) and stored files (homework uploads)
• Required to delete data after retention period
• To not lose exam admissions, archived export of essential data is important

13



Technologies to Learn / Know

• Git
• Backend

◦ Java
◦ Spring Boot
◦ jOOQ (Code Generator for type-safe database access)

• Frontend
◦ TypeScript / Javascript
◦ Vue
◦ HTML, CSS

14



Search tool for Agda

Supervisor: Alexander Dinges

15



Your task

• CLI search tool for an Agda repository
• Find function signatures/propositions/types together with

their names given a part of the type
• Reasonably fast



Minimum requirements for getting your credit points

• Given a signature t1 → t2 → . . . tn find all (complete)
signatures (in a given Agda code base) that contain
t1, . . . tn−1 as parameter type and tn as return type.
I t1, . . . , tn match up to variable renaming (consistently) and

number representation
I I.e. find 1 ≺ n → 0 ≺ n/2 when given

(succ zero) ≺ a → zero ≺ a/2
• Don’t find irrelevant stuff.
• Reasonable ranking and speed.



Minimum requirements for getting your credit points

Moreover, choose at least 2 of the following points:
• Make the CLI user-friendly: Agda input method, colors, search

history, ...
• Allow more flexible search strings: Partial matching,

underscore patterns, ...
• Good ranking.
• Allow more unification
• Your own idea?



Technologies to learn/know

• Git
• A tiny bit of Agda
• You can use (almost) any programming language you like



Developing a web app using Haskell

Supervisor: Michael Youssef

16



Why Haskell?

● Haskell is a pure language
● No unintended side effects
● ADTs
● Modularity
● Laziness
● Referential transparency



Why Haskell?

● Haskell is a pure language
● No unintended side effects
● ADTs
● Modularity
● Laziness
● Referential transparency

● No null-pointer exceptions
● No IO exceptions
● Elegant approach towards 

handling IO
● No unhandled cases



Challenges/What you will learn?

● Type classes
● Practical usages of functors, 

applicatives and monads
● Monad transformers
● Type families
● Template Haskell
● Debugging with lazy 

evaluation



Challenges/What you will learn?

● Type classes
● Practical usages of functors, 

applicatives and monads
● Monad transformers
● Type families
● Template Haskell
● Debugging with lazy 

evaluation

● Network IO
● Database storage
● Caching
● Writing a fully fledged 

application in Haskell



Why should you care?

● ECTS….
● Learn some practical applications of the stuff you learned in FP
● Knowledge you gain is transferable to other programming language 

paradigms



LATEX-formatted Execution Traces of
Algorithms on Automata & Grammars

Supervisor: Cass Alexandru

17



LATEX-formatted Execution Traces of
Algorithms on Automata & Grammars

Problem Statement

18



• Lecture “Formal Languages and Computability”
• Students learn to execute several algorithms on automata & grammars by hand
• I (the client) want a software tool that:

◦ Given an input object (an automaton or grammar)
◦ Executes one of a number of algorithms on it and outputs its execution trace

(showing its steps) in the format used in the lecture

• This tool would allow me to more quickly iterate exercise ideas & easily and
confidently generate correct reference solutions without time-consuming and
error-prone manual calculation

19



Algorithms

• Automata:
◦ Minimization
◦ Determinization (Powerset/Rabin-Scott Construction)
◦ Product Automaton
◦ Execution trace ((nondeterministic) stack automaton)
◦ Execution trace (Turing machine)

• Grammars:
◦ CNF (Chomsky Normal Form) algorithm for context-free grammar
◦ CYK Algorithm for bottom-up parsing of words in a cf grammar

• Derivation of word from starting symbol in case of language membership

20



21



22



23



24



25



26



27



28



29



LATEX-formatted Execution Traces of
Algorithms on Automata & Grammars

Execution

30



Required Skills

• At least one member should have experience with the following:
◦ B2 level German (reference solns are generated in German, though you won’t need

to write much text yourself, I provide templates)
◦ LATEX (again, I mostly provide templates and will also provide guidance)
◦ The algorithms in question from the “Formal Languages” lecture

31



Development Process

• Regular meetings with me to keep shared understanding of requirements synched
• There will be milestones for deliverables with intermediate functionality
• Development should use Gitlab Issues, Issue Boards and, ideally, CI/CD, with

provisions made for shared, replicable build and dev environments across the team
and CI

33



Roadmap

• 23.05: DFA Minimization
• 30.05: CNF
• 06.06: CYK
• 13.06: PDA trace
• 20.06: TM trace
• 27.06: NFA Determinization
• 04.07: Product Automaton

Divide up responsibilities & pipeline tasks!

34


	Organization
	Data Management for ExClaim
	Search tool for Agda
	Developing a web app using Haskell
	LaTeX-formatted Execution Traces of Algorithms on Automata & Grammars
	Problem Statement
	Execution


