
Replication and Consistency

01 Introduction

Dr. Annette Bieniusa
AG Software Technology + AG Programming Languages
TU Kaiserslautern

read

write read

write

!! !!

Moore’s Law

2

Clock speed
flattening

sharply

Transistor
count still

rising

Source: https://github.com/karlrupp/microprocessor-trend-data

Moore’s Law (in practice)

Nearly Extinct: the Uniprocesor

4

memory

cpu

Endangered:
The Shared Memory Multiprocessor
(SMP)

5

cache

BusBus

shared memory

cachecache

The New Boss:
The Multicore Processor
(CMP)

6

cache

BusBus

shared memory

cachecache
All on the
same chip

Sun T2000
Niagara

Why do we care?

• Time no longer cures software bloat
• The “free-ride” is over

• When you double your program’s path length
• You can’t just wait 6 months
• Your software must somehow exploit twice as much

concurrency

7

Traditional Scaling Process

8

User code

Traditional
Uniprocessor

Speedup
1.8x

7x

3.6x

Time: Moore’s law

Ideal Scaling Process

9

User code

Multicore

Speedup 1.8x

7x

3.6x

Unfortunately, not so simple…

Actual Scaling Process

10

1.8x 2x 2.9x

User code

Multicore

Speedup

Amdahl’s Law

11

Speedup =
execution time for 1 thread

execution time for n threads

= !
! "# $ %

&
Sequential

fraction

Parallel fraction

12

Example 1

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

10
6.06.01

1

+-
Speedup = 2.17 =

13

Example 2

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

10
8.08.01

1

+-
Speedup = 3.57 =

Example 3

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

14

10
9.09.01

1

+-
Speedup = 5.26 =

Example 4

• Ten processors
• 99% concurrent, 1% sequential
• How close to 10-fold speedup?

15

10
99.099.01

1

+-
Speedup = 9.17=

Amdahl’s Law (in practice)

And this is the topic of our course!

Parallelization and Synchronization
require great care…

Course overview

• Fundamentals
• Synchronization primitives for Mutual Exclusion and

Cooperation
• Models for Shared Memory: TSO + PSO

(Guest lecturer: Victor Vafeiadis, MPI-SWS)
• Correctness notions for Concurrent Objects
• Impossibility results

• Real-World programming
• Spin locking
• Concurrent data structures: Lists, Queues, Stacks

18

Course objectives

You will be able to
• understand and explain the underlying mechanisms

of classical concurrent and replicated data
structures,

• explain and elaborate the limitations of non-
blocking synchronization mechanisms, and

• formally describe and compare standard memory
and consistency models for concurrent systems.

Organization

• Lecturer: Annette Bieniusa
• Tutor: 🥺

Lectures: Wed 10:00 – 11:30
Check homepage for new room!

(Bi-weekly) Exercise session
Please participate in vote here:
https://terminplaner4.dfn.de/AaeSjkdJzXuPDikl
(deadline Friday, Nov 08, 12:00)

https://terminplaner4.dfn.de/AaeSjkdJzXuPDikl

Exam and admission

• Oral exam
• Please register with our secretary Judith Stengel for

a time slot (and ofc with the examination office)!

• Admission to exam:
One mandatory mini-project in January

Reading material

The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

(Morgan Kaufman, 2012, Revised first edition)

Sequential Computation

23

memory

object object

thread

Concurrent Computation

24

memory

object object

th
re

ad
s

memory

object object

Asynchrony

Sudden unpredictable delays possible
• Cache misses
• Page faults
• Time allocated by scheduler used up

25

Model Summary

• N threads
• Sometimes called processes
• Uniquely identified by id number (for simplicity: 1, …, n)

• Single shared memory
• More complex memory models later!

• Objects reside in memory
• Communication via reading and writing of memory

locations (sometimes called shared registers)

• Unpredictable asynchronous delays
• I.e. no assumptions about relative speed of processors

26

27

Road Map

• We are going to focus on principles first, then
practice

• Start with idealized models
• Look at simplistic problems
• Emphasize correctness over pragmatism
• “Correctness may be theoretical, but incorrectness has

practical impact”

28

Task: Parallel Primality Testing

• Challenge
• Print primes from 1 to 1010 (in arbitrary order)

• Given
• Ten-processor multiprocessor
• One thread per processor

• Goal
• Get ten-fold speedup (or close)!

Idea: Load Balancing

• Split the work evenly
• Each thread tests values in range of 109

29

…

…109 10102·1091

P0 P1 P9

30

Procedure for Thread i

void primePrint() {
int i = ThreadID.get();
// Assume IDs in {0..9}
for (j = i*109+1, j<(i+1)*109; j++) {
if (isPrime(j))
print(j);

}
}

31

Issues

• Higher ranges have fewer primes
• Yet, larger numbers harder to test
• As a consequence, thread workloads are

• uneven
• hard to predict

We want dynamic load balancing!

rejected

Shared Counter

32

17

18

19

Each thread takes
a number

33

Procedure for Thread i

int counter = new Counter(1);

void primePrint(){
long j = 0;
while (j < 1010) {
j = counter.getAndIncrement();
if (isPrime(j))
print(j);

}
}

Procedure for Thread i

34

Counter counter = new Counter(1);

void primePrint {
long j = 0;
while (j < 1010) {
j = counter.getAndIncrement();
if (isPrime(j))
print(j);

}
}

Shared counter
object

Where Things Reside

35

cache

BusBus

cachecache

1

shared counter

shared
memory

void primePrint {
int i =

ThreadID.get(); // IDs
in {0..9}
for (j = i*109+1,

j<(i+1)*109; j++) {
if (isPrime(j))
print(j);

}
}

code

Local
variables

Procedure for Thread i

36

Counter counter = new Counter(1);

void primePrint {
long j = 0;
while (j < 1010) {
j = counter.getAndIncrement();
if (isPrime(j))
print(j);

}
}

Stop when every value
taken

Procedure for Thread i

37

Counter counter = new Counter(1);

void primePrint {
long j = 0;
while (j < 1010) {
j = counter.getAndIncrement();
if (isPrime(j))
print(j);

}
} Increment & return each

new value

Counter Implementation

38

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

}
} OK for single thread,

not for concurrent threads

What It Means

39

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

}
}

temp = value;
value = temp + 1;
return temp;

Not so good…

40

time

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Is this problem inherent?

41

If we could only glue reads and writes
together…

read

write read

write

!! !!

Challenge

42

public class Counter {
private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

}
}

Make these steps
atomic (indivisible)

Hardware Solution

43

public class Counter {
private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

}
} ReadModifyWrite()

instruction

An Aside: Java™

44

public class Counter {
private long value;

public long getAndIncrement() {
synchronized {
temp = value;
value = temp + 1;
}

return temp;
}

}
Synchronized block

An Aside: Java™

45

public class Counter {
private long value;

public long getAndIncrement() {
synchronized {
temp = value;
value = temp + 1;
}

return temp;
}

}

Mutual Exclusion

46

Mutual Exclusion,
or “Alice & Bob share a pond”

A B

47

Alice has a pet

A B

48

Bob has a pet

A B

49

The Problem

A B

The pets don’t
get along

50

Formalizing the Problem

Two types of formal properties in asynchronous
computation:

• Safety Properties
• “Nothing bad happens ever”

• Liveness Properties
• “Something good happens eventually”

51

Formalizing the Pet Problem

• Mutual Exclusion
• Both pets never in pond simultaneously
• This is a safety property

• No Deadlock
• If only one wants in, it gets in.
• If both want in, one gets in.
• This is a liveness property

52

Simple Protocol

• Idea
• Just look at the pond!

• Gotcha
• Not atomic
• Trees obscure the view

53

Interpretation

• Threads can’t “see” what other threads are doing
• Explicit communication required for coordination

54

Cell Phone Protocol

• Idea
• Bob calls Alice (or vice-versa)

• Gotcha
• Bob takes shower
• Alice recharges battery
• Bob out shopping for pet food …

55

Interpretation

• Message-passing doesn’t work
• Recipient might not be

• listening
• there at all

• Communication must be
• persistent (like writing)
• not transient (like speaking)

56

Can Protocol

co
ke

co
ke

57

Bob conveys a bit

A B

co
ke

58

Bob conveys a bit

A B

coke

59

Can Protocol

• Idea
• Cans on Alice’s windowsill
• Strings lead to Bob’s house
• Bob pulls strings, knocks over cans

• Gotcha
• Cans cannot be reused unless Alice sets them up again
• Bob runs out of cans

60

Interpretation

• Cannot solve mutual exclusion with interrupts
• Sender sets fixed bit in receiver’s space
• Receiver resets bit when ready
• Requires unbounded number of interrupt bits

61

Flag Protocol

A B

62

Alice’s Protocol (sort of)

A B

63

Bob’s Protocol (sort of)

A B

64

Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

65
Dan

ge
r!

Bob’s Protocol (2nd try)

• Raise flag
• While Alice’s flag is up

• Lower flag
• Wait for Alice’s flag to go down
• Raise flag

• Unleash pet
• Lower flag when pet returns

66

Bob defers to
Alice

67

The Flag Principle

• Raise the flag
• Look at other’s flag

Flag Principle:
• If each raises and looks, then the last to look must see

both flags up!

68

Proof of Mutual Exclusion

• Assume both pets in pond
• Derive a contradiction
• By reasoning backwards

• Consider the last time Alice and Bob each looked
before letting the pets in

• Without loss of generality, assume Alice was the
last to look…

Bob last raised
flag

Proof Sketch

69

time

Alice’s last look

Alice last raised her flag

Bob’s last
look

QED

Alice must have seen Bob’s Flag → Contradiction

Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually trying to get in.
• If Bob sees Alice’s flag, he gives her priority (a

gentleman…)

70

QED

71

Remarks

• Protocol is unfair
• Bob’s pet might never get in

• Protocol uses waiting
• If Bob is eaten by his pet, Alice’s pet might never get in

72

Moral of Story

• Mutual Exclusion cannot be solved by
• transient communication (cell phones)
• interrupts (see homework)

• It can be solved by
• one-bit shared variables
• that can be read and written

The Arbiter Problem (an aside)

73

Pick a
point

Pick a
point

74

The Fable Continues

• Alice and Bob fall in love & marry
• Then they fall out of love & divorce

• She gets the pets
• He has to feed them

• New coordination problem: Producer-Consumer

75

Bob puts food in the pond

A

76

mmm…

Alice releases her pets to feed

B
mmm…

77

The Producer/Consumer Problem

• Alice and Bob can’t meet
• Each has restraining order on other
• So, he puts food in the pond
• And later, she releases the pets

• They must avoid
• Releasing pets when there’s no food
• Putting out food if uneaten food remains

• Need a mechanism so that
• Bob lets Alice know when food has been put out
• Alice lets Bob know when to put out more food

78

Surprise Solution

A B

co
ke

79

Bob puts food in pond

A B

co
ke

80

Bob knocks over Can

A B

coke

81

Alice Releases Pets

A B

coke

yum… B
yum…

82

Alice Resets Can when Pets are Fed

A B

co
ke

Pseudocode

83

while (true) {
while (can.isUp()){};
pet.release();
pet.recapture();
can.reset();

}

Alice’s code

while (true) {
while (can.isDown()){};
pond.stockWithFood();
can.knockOver();

}

Bob’s code

Correctness

• Mutual Exclusion
Pets and Bob never together in pond

• No Starvation
If Bob always willing to feed, and pets always famished,

then pets eat infinitely often.

• Producer/Consumer
The pets never enter pond unless there is food, and Bob

never provides food if there is unconsumed food.

84

safety

liveness

safety

85

Could Also Solve Using Flags

A B

86

Waiting

• Both solutions use waiting
• while(mumble){}

• In some cases, waiting is problematic
• If one participant is delayed, so is everyone else
• Delays are common & unpredictable

87

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
• They agree to use billboards …

88

E
1

D
2C

3

Billboards are Large

B
3A

1

Letter
Tiles

From Scrabble™ box

89

E
1

D
2C

3

Write One Letter at a Time …

B
3A

1

W
4
A

1
S

1

H
4

90

… to post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whew

91

S
1

Let’s send another message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1 P

3

92

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

93

The Readers/Writers Problem

• Devise a protocol so that
• Writer writes one letter at a time
• Reader reads one letter at a time
• Reader sees “snapshot”

• Old message or new message
• No mixed messages

94

The Readers/Writers Problem
(continued)
• Easily solvable with mutual exclusion
• But mutual exclusion requires waiting

• One waits for the other
• Everyone executes sequentially

We can solve R/W without mutual exclusion!

Esoteric?

• Java container size() method of shared
concurrent object

• Single shared counter?
- incremented with each add() and
- decremented with each remove()

• Threads wait to exclusively access counter

95

perfo
rm

ance

bottle
neck

96

Readers/Writers Solution

• Each thread i has size[i] counter
- only this thread increments or decrements.

• To get object’s size, a thread reads a “snapshot” of
all counters

• This eliminates the bottleneck!

97

Summary

• We want as much of the code as possible to
execute concurrently (in parallel)
- A larger sequential part implies reduced performance
- Amdahl’s law: This relation is not linear…

• Synchronization: Contention or Collaboration
• Classical Problems

• Mutual Exclusion
• Producer-Consumer
• Reader-Writer

Homework: Reading
Leslie Lamport : Solved Problems, Unsolved Problems and
NonProblems in Concurrency
Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing (August, 1984) 1-11.
https://lamport.azurewebsites.net/pubs/solved-and-
unsolved.pdf

„This is the invited address I gave at the 1983 PODC conference, which I transcribed from a tape recording of my
presentation. The first few minutes of the talk were not taped, so I had to reinvent the beginning. This talk is
notable because it marked the rediscovery by the computer science community of Dijkstra's 1974 CACM paper that
introduced the concept of self-stabilization. A self-stabilizing system is one that, when started in any state,
eventually "rights itself" and operates correctly. The importance of self-stabilization to fault tolerance was obvious
to me and a handful of people, but went completely over the head of most readers. Dijkstra's paper gave little
indication of the practical significance of the problem, and few people understood its importance. So, this gem of a
paper had disappeared without a trace by 1983. My talk brought Dijkstra's paper to the attention of the PODC
community, and now self-stabilization is a regular subfield of distributed computing. I regard the resurrection of
Dijkstra's brilliant work on self-stabilization to be one of my greatest contributions to computer science.
The paper contains one figure--copied directly from a transparency--with an obviously bogus algorithm. I tried to
recreate an algorithm from memory and wrote complete nonsense. It's easy to make such a mistake when drawing
a transparency, and I probably didn't bother to look at it when I prepared the paper. To my knowledge, it is the only
incorrect algorithm I have published. “

https://lamport.azurewebsites.net/pubs/solved-and-unsolved.pdf

99

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that
suggests that the authors endorse you or your use of the
work).

– Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

• For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission
from the copyright holder.

• Nothing in this license impairs or restricts the author's moral
rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

