
Replication and Consistency
02 Mutual Exclusion

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Winter Term 2019
Annette Bieniusa Replication and Consistency Winter Term 2019 1/ 62

Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency Winter Term 2019 2/ 62

Goals of this lecture

Formalize our understanding of mutual exclusion
Discuss protocols for 2 threads and extensions for N threads

Fairness
Inherent costs

Learn how to argue about and prove various properties in an
asynchronous concurrent setting

Annette Bieniusa Replication and Consistency Winter Term 2019 3/ 62

The History of the Mutual Exclusion Problem
First solution by Dekker
Fischer, Knuth, Lynch, Rabin, Rivest, . . .
1974 Bakery algorithm by Lamport
1981 Peterson’s algorithm
Hundreds of published solutions - not all correct!

Quelle: Wikipedia

In his 1965 paper E. W. Dijkstra wrote:
Given in this paper is a solution to a problem
which, to the knowledge of the author, has been
an open question since at least 1962, irrespective
of the solvability. [. . .] Although the setting of
the problem might seem somewhat academic
at first, the author trusts that anyone familiar
with the logical problems that arise in computer
coupling will appreciate the significance of the
fact that this problem indeed can be solved.

Annette Bieniusa Replication and Consistency Winter Term 2019 4/ 62

Warning!

You will never use these protocols!
Get over it . . .

You are advised to understand them
The same issues show up everywhere
Except they will be hidden and more complex

Annette Bieniusa Replication and Consistency Winter Term 2019 5/ 62

Preliminaries

Annette Bieniusa Replication and Consistency Winter Term 2019 6/ 62

Time

Absolute, true and mathematical time, of itself and from
its own nature, flows equably without relation to anything
external.” (Isaac Newton, 1689)

Time is, like, Nature’s way of making sure that everything
doesn’t happen all at once.” (Anonymous, circa 1968)

Annette Bieniusa Replication and Consistency Winter Term 2019 7/ 62

Formal system model

Definition
A thread A is a sequence a0, a1, . . . of events.

A a0 a1 a2 . . . an
. . .

“Trace” model
An event a0 of thread A is

instantaneous
at a unique point in time (no simultaneous events!)

Notation: a0 → a1 indicates order

Annette Bieniusa Replication and Consistency Winter Term 2019 8/ 62

Threads are State Machines

Thread State: Program counter + local variables
System state: Thread states + shared variables
Events are state transitions

Assign value to shared variable
Assign value to local variable
Read value from shared/local variable
Invoke method
Return from method etc.

Annette Bieniusa Replication and Consistency Winter Term 2019 9/ 62

Modelling Concurrency via Interleaving

A a0 a1 a2 . . .

B b0 b1 b2
. . .

A + B a0 a1 a2b0 b1 b2
. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 10/ 62

Modelling Concurrency via Interleaving

A a0 a1 a2 . . .

B b0 b1 b2
. . .

A + B a0 a1 a2b0 b1 b2
. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 10/ 62

Intervals

An interval A0 = (a0, a1) is the time between events a0 and a1.

A a0 a1

A0

Task
Give definitions and examples of

Overlapping intervals
Disjoint intervals

Annette Bieniusa Replication and Consistency Winter Term 2019 11/ 62

Intervals

An interval A0 = (a0, a1) is the time between events a0 and a1.

A a0 a1

A0

Task
Give definitions and examples of

Overlapping intervals
Disjoint intervals

Annette Bieniusa Replication and Consistency Winter Term 2019 11/ 62

Precedence

Definition
Interval Ai precedes (happens before) interval Bj (Ai → Bj) if end
event of Ai is before start event of Bj .

Question
Precedence defines a partial order on intervals

Irreflexive: Never true that Ai → Ai

Antisymmetric: If Ai → Bj , then not true that Bj → Ai

Transitive: If Ai → Bj and Bj → Ck, then Ai → Ck

Why is precedence not a total order?

Annette Bieniusa Replication and Consistency Winter Term 2019 12/ 62

Repeated Events

while (...) {
a0; a1;

}

ak
0 denotes k-th occurrence of event a0, etc.

Ak
0 denotes k-th occurrence of interval A0

Annette Bieniusa Replication and Consistency Winter Term 2019 13/ 62

Mutual exclusion

Annette Bieniusa Replication and Consistency Winter Term 2019 14/ 62

The problem
Want to guarantee mutually exclusive access to some shared
resource for several competing processes
Avoid race conditions, i.e. flaws that occur when the timing or
ordering of events affects a program’s correctness

remainder code

entry code / lock

critical section

exit code / unlock

Annette Bieniusa Replication and Consistency Winter Term 2019 15/ 62

Formal properties
Mutual Exclusion
Critical sections of different threads do not overlap.
For threads A and B and integers j and k, either CSk

A → CSj
B or

CSj
B → CSk

A.

Deadlock Freedom
If some thread is trying to enter its critical section, then some thread
(not necessarily the same one!) eventually enters its critical section.

Starvation Freedom
If a thread is trying to enter its critical section, then this thread must
eventually enter its critical section.

Annette Bieniusa Replication and Consistency Winter Term 2019 16/ 62

Question

Which statement is correct?

Deadlock freedom implies starvation freedom.
Starvation freedom implies deadlock freedom.

Annette Bieniusa Replication and Consistency Winter Term 2019 17/ 62

Assumptions

The remainder code does not influence the behavior of other
threads.
Shared objects used in entry/exit code may not be referred to in
remainder code or critical section.
Process cannot fail (i.e. stop) while in entry code, critical section
or exit code.
Process executes critical section and exit code in a finite number
of steps.

Annette Bieniusa Replication and Consistency Winter Term 2019 18/ 62

QuestionThe following control flow graph sketches some algorithm C that
employs algorithms A and B.

remainder
code (of C)

entry code of A

entry code of B

critical section

exit code of B

exit code of A

1 If both A and B are deadlock-free, then C is deadlock-free.
2 If both A and B are starvation-free, then C is starvation-free.
3 If either A or B satisfy mutual exclusion, then C satisfy mutual exclusion.
4 If A is deadlock-free and B is starvation-free, then C is starvation-free.
5 If A is starvation-free and B is deadlock-free, then C is starvation-free.Annette Bieniusa Replication and Consistency Winter Term 2019 19/ 62

Protocols for Mutual Exclusion

Annette Bieniusa Replication and Consistency Winter Term 2019 20/ 62

Two-Thread vs n-Thread Solutions

First: Two-thread solutions
Illustrate most basic ideas
Algorithms fit on one slide

Then: n-Thread solutions

Annette Bieniusa Replication and Consistency Winter Term 2019 21/ 62

Protocol LockOne
Initially: turn = 0

Thread 0:
while (true) {

remainder code
turn = 0
while (turn == 1)

{skip;}
critical section

}

Thread 1:
while (true) {

remainder code
turn = 1
while (turn == 0)

{skip;}
critical section

}

Question
Does it solve the mutual exclusion problem?

Under sequential execution, threads cannot proceed.
⇒ Mutual exclusion, but not deadlock-freedom

Annette Bieniusa Replication and Consistency Winter Term 2019 22/ 62

Protocol LockOne
Initially: turn = 0

Thread 0:
while (true) {

remainder code
turn = 0
while (turn == 1)

{skip;}
critical section

}

Thread 1:
while (true) {

remainder code
turn = 1
while (turn == 0)

{skip;}
critical section

}

Question
Does it solve the mutual exclusion problem?
Under sequential execution, threads cannot proceed.
⇒ Mutual exclusion, but not deadlock-freedom

Annette Bieniusa Replication and Consistency Winter Term 2019 22/ 62

Convention

Initially: ...

Thread 0:
while (true) {

remainder code
entry code
critical section
exit code

}

Thread 1:
while (true) {

remainder code
entry code
critical section
exit code

}

Annette Bieniusa Replication and Consistency Winter Term 2019 23/ 62

Convention

Initially: ...

Thread 0:

entry code
critical section
exit code

Thread 1:

entry code
critical section
exit code

Annette Bieniusa Replication and Consistency Winter Term 2019 24/ 62

Protocol LockTwo
Initially: flag[0] = flag[1] = false

Thread 0:
while (true) {

remainder code
flag[0] = true
while (flag[1]) {skip;}
critical section
flag[0] = false

}

Thread 1:
while (true) {

remainder code
flag[1] = true
while (flag[0]) {skip;}
critical section
flag[1] = false

}

Question
Does it solve the mutual exclusion problem?

If each thread sets its flag to true and waits for the other, they will
wait forever.
⇒ Mutual exclusion, but not deadlock-freedom

Annette Bieniusa Replication and Consistency Winter Term 2019 25/ 62

Protocol LockTwo
Initially: flag[0] = flag[1] = false

Thread 0:
while (true) {

remainder code
flag[0] = true
while (flag[1]) {skip;}
critical section
flag[0] = false

}

Thread 1:
while (true) {

remainder code
flag[1] = true
while (flag[0]) {skip;}
critical section
flag[1] = false

}

Question
Does it solve the mutual exclusion problem?
If each thread sets its flag to true and waits for the other, they will
wait forever.
⇒ Mutual exclusion, but not deadlock-freedom

Annette Bieniusa Replication and Consistency Winter Term 2019 25/ 62

Protocol LockThree

Initially: flag[0] = flag[1] = false

Thread 0:
while (flag[1]) {skip;}
flag[0] = true
critical section
flag[0] = false

Thread 1:
while (flag[0]) {skip;}
flag[1] = true
critical section
flag[1] = false

Question
Does it solve the mutual exclusion problem?

If each thread pass the while-loop at the same time and set their flag
to true, they both enter the critical section.
⇒ Deadlock-freedom, but no mutual-exclusion

Annette Bieniusa Replication and Consistency Winter Term 2019 26/ 62

Protocol LockThree

Initially: flag[0] = flag[1] = false

Thread 0:
while (flag[1]) {skip;}
flag[0] = true
critical section
flag[0] = false

Thread 1:
while (flag[0]) {skip;}
flag[1] = true
critical section
flag[1] = false

Question
Does it solve the mutual exclusion problem?
If each thread pass the while-loop at the same time and set their flag
to true, they both enter the critical section.
⇒ Deadlock-freedom, but no mutual-exclusion

Annette Bieniusa Replication and Consistency Winter Term 2019 26/ 62

Peterson’s Algorithm

Initially: flag[0] = flag[1] = false, turn = 0

Thread 0:
flag[0] = true
turn = 1

while (flag[1] && turn == 1) {
skip;

}
critical section

flag[0] = false

Thread 1:
flag[1] = true
turn = 0

while (flag[0] && turn == 0) {
skip;

}
critical section
flag[1] = false

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 62

In detail
// Announce interest
flag[i] = true

// Defer to the other
turn = j

// Wait while other is interested and not my turn
while (flag[j] && turn == j) {skip;}

critical section

// no longer interested
flag[i] = false

Does it matter if we replace the order of line 1 and 2?

Does not satisfy mutual exclusion anymore!

Annette Bieniusa Replication and Consistency Winter Term 2019 28/ 62

In detail
// Announce interest
flag[i] = true

// Defer to the other
turn = j

// Wait while other is interested and not my turn
while (flag[j] && turn == j) {skip;}

critical section

// no longer interested
flag[i] = false

Does it matter if we replace the order of line 1 and 2?

Does not satisfy mutual exclusion anymore!

Annette Bieniusa Replication and Consistency Winter Term 2019 28/ 62

In detail
// Announce interest
flag[i] = true

// Defer to the other
turn = j

// Wait while other is interested and not my turn
while (flag[j] && turn == j) {skip;}

critical section

// no longer interested
flag[i] = false

Does it matter if we replace the order of line 1 and 2?

Does not satisfy mutual exclusion anymore!

Annette Bieniusa Replication and Consistency Winter Term 2019 28/ 62

Proof Idea: Mutual Exclusion

If thread 0 in critical section: flag[0] = true, turn = 0

If thread 1 in critical section: flag[1] = true, turn = 1

⇒ Cannot both be true

Annette Bieniusa Replication and Consistency Winter Term 2019 29/ 62

Proof Idea: Mutual Exclusion

If thread 0 in critical section: flag[0] = true, turn = 0

If thread 1 in critical section: flag[1] = true, turn = 1

⇒ Cannot both be true

Annette Bieniusa Replication and Consistency Winter Term 2019 29/ 62

Proof Idea: Deadlock Freedom

In entry code for thread j:
while (flag[i] && turn == i) {};

Thread blocked

only at while loop
only if it is not its turn

⇒ Only one thread will have its value in turn!

Annette Bieniusa Replication and Consistency Winter Term 2019 30/ 62

Proof Idea: Starvation Freedom

Thread i blocked only if j repeatedly re-enters so that
flag[j] && turn == j

When thread j re-enters (i.e. calls again the entry code), it sets
turn to i.
Therefore, i eventually gets in.

Annette Bieniusa Replication and Consistency Winter Term 2019 31/ 62

Extension for N-Threads: Tournament Algorithms

0
 1
 2
 3
 4
 5
 6
 7

0
 2
1
 3

0
 1

0

The winner

processes

level 0

level 1

level 2

Annette Bieniusa Replication and Consistency Winter Term 2019 32/ 62

Properties

For Tournament Algorithm based on Peterson’s Algorithm:

Satisfies mutual exclusion and starvation freedom
Contention-free time complexity is 4 log n accesses to shared
memory
Uses 3(n− 1) shared registers, three for each node (= lock)
One process can enter its critical section arbitrarily many times
ahead of another slower process from a different subtree

⇒ Want stronger fairness guarantee!

Annette Bieniusa Replication and Consistency Winter Term 2019 33/ 62

Bounded Waiting

Divide entry code into two parts:
Doorway interval DA

Always finished in finite steps
Waiting interval WA

May take unbounded number of steps

Annette Bieniusa Replication and Consistency Winter Term 2019 34/ 62

r-Bounded Waiting

For threads A and B:

If Dk
A → Dj

B, then CSk
A → CSj+r

B

B cannot overtake A by more than r times
First-come-first-served (FIFO) means r = 0

For Tournament Algorithm from before:

No one starves
But very weak fairness: Not r-bounded for any r!
That is pretty lame. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 35/ 62

r-Bounded Waiting

For threads A and B:

If Dk
A → Dj

B, then CSk
A → CSj+r

B

B cannot overtake A by more than r times
First-come-first-served (FIFO) means r = 0

For Tournament Algorithm from before:

No one starves
But very weak fairness: Not r-bounded for any r!
That is pretty lame. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 35/ 62

Bakery Algorithm

Provides FIFO
Idea:

Take a number
Wait until lower numbers have been served

For symmetry breaking, we use lexicographic order on tuples:

(a, i) < (b, j) if a < b or a = b and i < j

Annette Bieniusa Replication and Consistency Winter Term 2019 36/ 62

Bakery Algorithm

Initially: For all i = 1,. . . ,n: number[i] = 0, choosing[i] = false

choosing[i] = true
number[i] = 1 + max {number[j] | (1 ≤ j ≤ n)}
choosing[i] = false
for j = 1 to n {

await (choosing[j] = false)
await (number[j] = 0) || (number[j], j) ≥ (number[i],i))

}
critical section
number[i] = 0

Annette Bieniusa Replication and Consistency Winter Term 2019 37/ 62

Computing the Maximum

local1 = 0
for local2 = 1 to n do

local3 = number[local2]
if local1 < local3 then local1 = local3

number[i] = 1 + local1

Question
Is this version also correct?
local1 = i
for local2 = 1 to n do

if number[local1] < number[local2] then local1 = local2
number[i] = 1 + number[local1]

Annette Bieniusa Replication and Consistency Winter Term 2019 38/ 62

Computing the Maximum

local1 = 0
for local2 = 1 to n do

local3 = number[local2]
if local1 < local3 then local1 = local3

number[i] = 1 + local1

Question
Is this version also correct?
local1 = i
for local2 = 1 to n do

if number[local1] < number[local2] then local1 = local2
number[i] = 1 + number[local1]

Annette Bieniusa Replication and Consistency Winter Term 2019 38/ 62

Properties of the Bakery Algorithm

Satisfies mutual exclusion and FIFO
Works with safe registers: Reads which are concurrent with
writes may return arbitrary value

Annette Bieniusa Replication and Consistency Winter Term 2019 39/ 62

Proof idea: FIFO

If DA → DB, then A’s number is smaller than B’s
writeA(number[A]) → readB(number[A]) → writeB(number[B])
→ readB(choosing[A])
So B is locked out while choosing[A] is true

Annette Bieniusa Replication and Consistency Winter Term 2019 40/ 62

Question

The Bakery Algorithm is succinct, elegant, and fair.

So why isn’t it practical?

The size of number[i] is unbounded
But variants with bounded space exist where numbers are re-used

Well, you have to read N distinct variables

Annette Bieniusa Replication and Consistency Winter Term 2019 41/ 62

Question

The Bakery Algorithm is succinct, elegant, and fair.

So why isn’t it practical?

The size of number[i] is unbounded
But variants with bounded space exist where numbers are re-used

Well, you have to read N distinct variables

Annette Bieniusa Replication and Consistency Winter Term 2019 41/ 62

Classification of registers

Shared read/write memory locations called registers (historical
reasons)
Different flavors

SRSW = Single-Reader-Single-Writer
MRSW = Multi-Reader-Single-Writer (like flag[])
MRMW = Multi-Reader-Multi-Writer (like number[] or turn)
[Not that interesting: SRMW]

Annette Bieniusa Replication and Consistency Winter Term 2019 42/ 62

Observation

Any deadlock-free mutual exclusion algorithm for N threads using only
SWMR registers must use at least N such registers.

Proof: Before entering its critical section a thread must write at least
once. . . .

Annette Bieniusa Replication and Consistency Winter Term 2019 43/ 62

Observation

Any deadlock-free mutual exclusion algorithm for N threads using only
SWMR registers must use at least N such registers.

Proof: Before entering its critical section a thread must write at least
once. . . .

Annette Bieniusa Replication and Consistency Winter Term 2019 43/ 62

Can we do better using MWMR registers ?

Annette Bieniusa Replication and Consistency Winter Term 2019 44/ 62

Theorem (Lower Bound)

Any deadlock-free mutual exclusion algorithm for N threads must use
at least N shared (MWMR) registers.

Proof: Tricky!(Burns and Lynch 1993)

⇒ Let’s have a look at the case for two threads!

Annette Bieniusa Replication and Consistency Winter Term 2019 45/ 62

Proving Algorithmic Impossibility

To show no algorithm exists:

Assume by way of contradiction one does exist
Show a bad execution that violates assumed properties

In our case, assume an algorithm for deadlock-free mutual exclusion
using < N registers and show how several threads can reach the CS at
the same time.

Annette Bieniusa Replication and Consistency Winter Term 2019 46/ 62

Theorem (Lower Bound) for Two Threads

Any deadlock-free mutual exclusion algorithm for 2 threads must use at
least 2 shared MWMR registers.

Proof: Assume one register suffices and derive a contradiction

Annette Bieniusa Replication and Consistency Winter Term 2019 47/ 62

Theorem (Lower Bound) for Two Threads

Any deadlock-free mutual exclusion algorithm for 2 threads must use at
least 2 shared MWMR registers.

Proof: Assume one register suffices and derive a contradiction

Annette Bieniusa Replication and Consistency Winter Term 2019 47/ 62

Proof (1): Two-thread executions

Threads run, reading and writing register R
Deadlock-freedom ⇒ at least one thread gets in

Annette Bieniusa Replication and Consistency Winter Term 2019 48/ 62

Proof (2): Covering State for One Register Always Exists

In any protocol, B has to write to R before entering CS
Stop it just before

Annette Bieniusa Replication and Consistency Winter Term 2019 49/ 62

Proof (3): While B is covering R

A runs, possibly writes to R and enters CS

Annette Bieniusa Replication and Consistency Winter Term 2019 50/ 62

Proof (4): Now B (over)writes

B Runs, first obliterating any trace of A, then also enters CS

⇒ Mutual exclusion violated!

Annette Bieniusa Replication and Consistency Winter Term 2019 51/ 62

Proof (4): Now B (over)writes

B Runs, first obliterating any trace of A, then also enters CS

⇒ Mutual exclusion violated!

Annette Bieniusa Replication and Consistency Winter Term 2019 51/ 62

Theorem (Lower Bound) for Three Threads

Any deadlock-free mutual exclusion algorithm for 3 threads must use at
least 3 shared MWMR registers.

Annette Bieniusa Replication and Consistency Winter Term 2019 52/ 62

Proof (1)

Assume covering state for 2 threads

Annette Bieniusa Replication and Consistency Winter Term 2019 53/ 62

Proof (2)

Now A runs, write to one or both registers, enters CS

Annette Bieniusa Replication and Consistency Winter Term 2019 54/ 62

Proof (3)

Other threads obliterate evidence that A entered CS

Annette Bieniusa Replication and Consistency Winter Term 2019 55/ 62

Proof (4)

Other thread gets in because situation cannot be distinguished

Annette Bieniusa Replication and Consistency Winter Term 2019 56/ 62

Proof (5): How do we reach this covering state?

Start in covering state of B for register RB

If we run B through CS 3 times, B must return twice to cover
some register → RB

Pigeon-hole principle
Run system until A is about to write to (uncovered) RA

Must exist!

Annette Bieniusa Replication and Consistency Winter Term 2019 57/ 62

Proof (6): Are we done?

No! A could have written to RB

So, CS no longer looks empty
Observable by thread C

Annette Bieniusa Replication and Consistency Winter Term 2019 58/ 62

Proof (6): Are we done?

No! A could have written to RB

So, CS no longer looks empty
Observable by thread C

Annette Bieniusa Replication and Consistency Winter Term 2019 58/ 62

Proof (7): One more round

Run B to obliterate traces of A in RB

Run B again till it is about to write to RB

Now we are done

Annette Bieniusa Replication and Consistency Winter Term 2019 59/ 62

From 3 to N threads

Proof by induction
There is a covering state where k threads not in CS cover k
distinct registers
Proof follows when k = N − 1

Annette Bieniusa Replication and Consistency Winter Term 2019 60/ 62

Summary

In the 1960’s many incorrect solutions to starvation-free mutual
exclusion using RW-registers were published . . .
Today, we know how to solve FIFO with N -thread mutual
exclusion using 2N RW-Registers

N RW-Registers inefficient
Reason: Writes “cover” older writes

Need stronger hardware operations that do not have the “covering
problem”
Following lectures: Understand what these operations are!

Annette Bieniusa Replication and Consistency Winter Term 2019 61/ 62

Summary

In the 1960’s many incorrect solutions to starvation-free mutual
exclusion using RW-registers were published . . .
Today, we know how to solve FIFO with N -thread mutual
exclusion using 2N RW-Registers
N RW-Registers inefficient

Reason: Writes “cover” older writes
Need stronger hardware operations that do not have the “covering
problem”
Following lectures: Understand what these operations are!

Annette Bieniusa Replication and Consistency Winter Term 2019 61/ 62

Copyright

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work to “The Art of Multiprocessor Programming” and “Synchronization
Algorithms and Concurrent Programming” (but not in any way that suggests that the authors endorse you or
your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is
with a link to http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get
permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

Burns, James E., and Nancy A. Lynch. 1993. “Bounds on Shared Memory for Mutual Exclusion.” Inf. Comput. 107 (2):
171–84. https://doi.org/10.1006/inco.1993.1065.

Annette Bieniusa Replication and Consistency Winter Term 2019 62/ 62

https://doi.org/10.1006/inco.1993.1065

	Preliminaries
	Mutual exclusion
	Protocols for Mutual Exclusion

