
Replication and Consistency
03 Concurrent Objects

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Winter Term 2019
Annette Bieniusa Replication and Consistency Winter Term 2019 1/ 76

Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency Winter Term 2019 2/ 76

Goals of this lecture

What is a concurrent object?

How do we describe one?
[How do we implement one?] ⇒ Following lectures!
How do we tell if it is correct?

Annette Bieniusa Replication and Consistency Winter Term 2019 3/ 76

Example: Concurrent FIFO-Queue

Annette Bieniusa Replication and Consistency Winter Term 2019 4/ 76

Example: Concurrent FIFO-Queue

Annette Bieniusa Replication and Consistency Winter Term 2019 5/ 76

Implementation: Lock-based Queue

class LockBasedQueue<T> {
int head, tail;
T[] items;
Lock lock;

LockBasedQueue(int capacity) {
head = 0; tail = 0;
lock = new ReentrantLock();
items = (T[]) new Object[capacity];

}

Annette Bieniusa Replication and Consistency Winter Term 2019 6/ 76

Sketch

Initially, queue is empty: head == tail

Queue is full once head == tail - capacity

Annette Bieniusa Replication and Consistency Winter Term 2019 7/ 76

Implementation: Dequeue

T deq() throws EmptyException {
lock.lock();
try {

if (tail == head)
throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}
}

Should be correct because modifications are mutually exclusive . . .

Annette Bieniusa Replication and Consistency Winter Term 2019 8/ 76

Implementation: Dequeue

T deq() throws EmptyException {
lock.lock();
try {

if (tail == head)
throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}
}

Should be correct because modifications are mutually exclusive . . .

Annette Bieniusa Replication and Consistency Winter Term 2019 8/ 76

Let’s get rid of the lock!

Can we give an implementation without mutual exclusions
For simplicity: Two-thread solution

One thread enqueues only
The other dequeues only

Annette Bieniusa Replication and Consistency Winter Term 2019 9/ 76

Wait-free Two-Thread Queue
class WaitFreeQueue<T> {

int head = 0, tail = 0;
items = new T[capacity];

void enq(T x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x;
tail++;

}

T deq() {
while (tail == head); // busy-wait
T item = items[head % capacity];
head++;
return item;

}
}

Is this correct? Probably for two threads. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 10/ 76

Wait-free Two-Thread Queue
class WaitFreeQueue<T> {

int head = 0, tail = 0;
items = new T[capacity];

void enq(T x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x;
tail++;

}

T deq() {
while (tail == head); // busy-wait
T item = items[head % capacity];
head++;
return item;

}
}

Is this correct? Probably for two threads. . .

Annette Bieniusa Replication and Consistency Winter Term 2019 10/ 76

How do we define “correctness” when modifications are not mutually
exclusive?

Annette Bieniusa Replication and Consistency Winter Term 2019 11/ 76

Semantics for concurrent queue implementations

Need a way to specify a concurrent queue object
Need a way to prove that an algorithm implements the object’s
specification
Let’s talk about object specifications!

Annette Bieniusa Replication and Consistency Winter Term 2019 12/ 76

Correctness and Progress

In a concurrent setting, we need to specify both the safety and
the liveness properties of an object.
Need a way to define

when an implementation is correct
the conditions under which it guarantees progress

Let’s begin with correctness!

Annette Bieniusa Replication and Consistency Winter Term 2019 13/ 76

Correctness and Progress

In a concurrent setting, we need to specify both the safety and
the liveness properties of an object.
Need a way to define

when an implementation is correct
the conditions under which it guarantees progress

Let’s begin with correctness!

Annette Bieniusa Replication and Consistency Winter Term 2019 13/ 76

Sequential Objects

Each object has a state
Usually given by a set of fields
Queue example: sequence of items

Each object has a set of methods
Only way to manipulate state
Queue example: enq and deq methods

Annette Bieniusa Replication and Consistency Winter Term 2019 14/ 76

Sequential Specifications

If (precondition)
the object is in such-and-such a state before you call the method,

Then (postcondition)
the method will return a particular value
or throw a particular exception.

and (postcondition, con’t)
the object will be in some other state when the method returns

Annette Bieniusa Replication and Consistency Winter Term 2019 15/ 76

Example: Pre- and Post-Conditions for Deque (Part 1)

Precondition:
Queue is non-empty

Postcondition:
Returns first item in queue

Postcondition:
Removes first item in queue

Annette Bieniusa Replication and Consistency Winter Term 2019 16/ 76

Example: Pre- and Post-Conditions for Deque (Part 2)

Precondition:
Queue is empty

Postcondition:
Throws Empty exception

Postcondition:
Queue state unchanged

Annette Bieniusa Replication and Consistency Winter Term 2019 17/ 76

Why Sequential Specifications Totally Rock

Interactions among methods captured by side-effects on object
state

State meaningful between method calls
Documentation size linear in number of methods

Each method described in isolation
Can add new methods

Without changing descriptions of old methods

Annette Bieniusa Replication and Consistency Winter Term 2019 18/ 76

What About Concurrent Specifications?

Methods?
Documentation?
Adding new methods (i.e. compositionality)?

Annette Bieniusa Replication and Consistency Winter Term 2019 19/ 76

Methods Take Time

time

Annette Bieniusa Replication and Consistency Winter Term 2019 20/ 76

Methods Take Time

time

Annette Bieniusa Replication and Consistency Winter Term 2019 21/ 76

Methods Take Time

time

Annette Bieniusa Replication and Consistency Winter Term 2019 22/ 76

Methods Take Time

time

Annette Bieniusa Replication and Consistency Winter Term 2019 23/ 76

Sequential vs Concurrent

Sequential
Methods take time? Who knew?

Concurrent
Method call is not an event.
Method call is an interval that starts with an invocation event
and ends with a response event.
A method call is pending if its call event has occurred, but not its
response event.

Annette Bieniusa Replication and Consistency Winter Term 2019 24/ 76

Concurrent Methods take overlapping time

time

Annette Bieniusa Replication and Consistency Winter Term 2019 25/ 76

Sequential vs Concurrent

Sequential
Object needs meaningful state only between method calls

Concurrent
Because method calls overlap, object might never be “between
method calls”

Annette Bieniusa Replication and Consistency Winter Term 2019 26/ 76

Sequential vs Concurrent

Sequential
Each method described in isolation
Can add new methods without affecting older methods

Concurrent
Everything can potentially interact with everything else
Must characterize all possible interactions with concurrent calls
What if two enqs overlap?
Two deqs? enq and deq? . . .

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 76

The BIG Question

What does it mean for a concurrent object to be correct?
What is a concurrent FIFO queue?

FIFO means strict temporal order
Concurrent means ambiguous temporal order

Annette Bieniusa Replication and Consistency Winter Term 2019 28/ 76

Intuition: Concurrency with Mutual exclusion

time

q.deq

q.enq

Behavior is actually “sequential”

Annette Bieniusa Replication and Consistency Winter Term 2019 29/ 76

Linearizability

Each method should “take effect” instantaneously between
invocation and response events
Object is correct if this “sequential” behavior is correct
Any such concurrent object is Linearizable™

Annette Bieniusa Replication and Consistency Winter Term 2019 30/ 76

Is it really about the object?

Recall: Each method should “take effect” instantaneously between
invocation and response events
Sounds like a property of an execution . . .
A linearizable object is one all of whose possible executions are
linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 31/ 76

Examples

Annette Bieniusa Replication and Consistency Winter Term 2019 32/ 76

Example 1

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (if linearization point of q.enq(x) is before linearization
point of q.enq(y))

Annette Bieniusa Replication and Consistency Winter Term 2019 33/ 76

Example 1

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (if linearization point of q.enq(x) is before linearization
point of q.enq(y))

Annette Bieniusa Replication and Consistency Winter Term 2019 33/ 76

Example 2

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable (q.enq(y) cannot be linearized before q.enq(x))

Annette Bieniusa Replication and Consistency Winter Term 2019 34/ 76

Example 2

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable (q.enq(y) cannot be linearized before q.enq(x))

Annette Bieniusa Replication and Consistency Winter Term 2019 34/ 76

Example 3

time

q.enq(x)

q.deq(x)

⇒ Linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 35/ 76

Example 3

time

q.enq(x)

q.deq(x)

⇒ Linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 35/ 76

Example 4

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (multiple orders possible)

Annette Bieniusa Replication and Consistency Winter Term 2019 36/ 76

Example 4

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (multiple orders possible)

Annette Bieniusa Replication and Consistency Winter Term 2019 36/ 76

Read/Write Register Example 1

time

write(0) read(1) write(2)

write(1) read(0)

⇒ Not linearizable: write(1) happened before read(0)

Annette Bieniusa Replication and Consistency Winter Term 2019 37/ 76

Read/Write Register Example 1

time

write(0) read(1) write(2)

write(1) read(0)

⇒ Not linearizable: write(1) happened before read(0)

Annette Bieniusa Replication and Consistency Winter Term 2019 37/ 76

Read/Write Register Example 2

time

write(0) read(1) write(2)

write(1) read(1)

⇒ Not linearizable

write(1) happened beforewrite(2)‘,
and write(2) happened before read(1)

Annette Bieniusa Replication and Consistency Winter Term 2019 38/ 76

Read/Write Register Example 2

time

write(0) read(1) write(2)

write(1) read(1)

⇒ Not linearizable

write(1) happened beforewrite(2)‘,
and write(2) happened before read(1)

Annette Bieniusa Replication and Consistency Winter Term 2019 38/ 76

Read/Write Register Example 3

time

write(0) write(2)

write(1) read(1)

⇒ Linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 39/ 76

Read/Write Register Example 3

time

write(0) write(2)

write(1) read(1)

⇒ Linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 39/ 76

Formal Definitions

Annette Bieniusa Replication and Consistency Winter Term 2019 40/ 76

Talking about executions

Why?
Can’t we specify the linearization point of each operation without
describing an execution?

Not Always
In some cases, linearization point depends on the execution

Annette Bieniusa Replication and Consistency Winter Term 2019 41/ 76

Executions

Split method calls into two events:

Invocation
method name & args
q.enq(x)

Response
result or exception
q.enq(x) returns void

q.deq() returns x

q.deq() throws empty

Annette Bieniusa Replication and Consistency Winter Term 2019 42/ 76

Notation

Invocation
A q.enq(x)

Response
A q: void
A q: empty()

Method is implicit

Annette Bieniusa Replication and Consistency Winter Term 2019 43/ 76

History
A q.enq(3)
A q: void
A q.enq(5)
B p.enq(4)
B p: void
B q.deq()
B q: 3

Definitions
A history H is a finite sequence of method invocation and
response events.
A subhistory of a history H is a subsequents of the events in H.
A response matches an invocation if they have the same object
and thread.
A method call in a history H is a pair of an invocation and the
next matching response in H.

Annette Bieniusa Replication and Consistency Winter Term 2019 44/ 76

Object Projections

H|q =
A q.enq(3)
A q: void
A q.enq(5)

B q.deq()
B q: 3

H|p =
B p.enq(4)
B p: void

Annette Bieniusa Replication and Consistency Winter Term 2019 45/ 76

Thread Projections

H|A =
A q.enq(3)
A q: void
A q.enq(5)

H|B =
B p.enq(4)
B p: void
B q.deq()
B q: 3

Annette Bieniusa Replication and Consistency Winter Term 2019 46/ 76

Complete Subhistory

complete(H) =
A q.enq(3)
A q: void
//A q.enq(5) -> Discard pending invocations
B p.enq(4)
B p: void
B q.deq()
B q: 3

The complete subhistory is the subsequence of H consisting of
all matching invocations and responses.
An invocation is pending if it has no matching response.

Annette Bieniusa Replication and Consistency Winter Term 2019 47/ 76

Sequential Histories

Method calls of different threads do not interleave
Final pending invocation ok

A q.enq(3)
A q:void // matched
B p.enq(4)
B p:void // matched
B q.deq()
B q:3 // matched
A q:enq(5)

A history H is sequential if the first event of H is an invocation and
each invocation, except possibly the last, is immediately followed by a
matching response.

Annette Bieniusa Replication and Consistency Winter Term 2019 48/ 76

Well-formed Histories

H =
A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

A history H is well-formed if each thread subhistory is sequential.

Annette Bieniusa Replication and Consistency Winter Term 2019 49/ 76

Equivalent Histories
H =
A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

G =
A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|A = G|A
H|B = G|B

Two histories H and G are equivalent if for every thread T ,
H|T = G|T .

Annette Bieniusa Replication and Consistency Winter Term 2019 50/ 76

Sequential Specifications

A sequential specification is some way of telling whether a
single-thread, single-object history is legal.
For example:

Pre- and post-conditions
But plenty of other techniques exist

Here: A sequential specification for an object is a set of sequential
histories for that object.

A sequential (multi-object) history H is legal if for every object x,
H|x is in the sequential spec for x.

Annette Bieniusa Replication and Consistency Winter Term 2019 51/ 76

Recall: Precedence

Given history H and method executions m0 and m1 in H, we say
m0 →H m1, if m0 precedes m1.
Relation m0 →H m1 is a

Partial order
Total order if H is sequential

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response event
precedes invocation
event.
Example:

Annette Bieniusa Replication and Consistency Winter Term 2019 52/ 76

Linearizability(Herlihy and Wing 1990)

A history H is linearizable if it can be extended to some history G by
appending zero or more responses to pending invocations
and there is a legal sequential history S such that complete(G) is
equivalent to S and →G⊂→S .

Annette Bieniusa Replication and Consistency Winter Term 2019 53/ 76

What is →G⊂→S ?

→G = {a→ c, b→ c}
→S = {a→ c, b→ c, a→ b}

time

a

b c

If method call m0 precedes m1 in G, then the same is true in S.

Annette Bieniusa Replication and Consistency Winter Term 2019 54/ 76

Remarks

Some pending invocations took effect, so keep them
Discard the rest
Condition →G⊂→S means that S respects “real-time order” of G
⇒ Restriction on S
When picking linearization points, they need to be within the
intervals
Only for unordered intervals, the order can be arbitrary

Annette Bieniusa Replication and Consistency Winter Term 2019 55/ 76

Example

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

time

q.enq(3)

q.enq(4) q.deq(4)q.enq(6)

Annette Bieniusa Replication and Consistency Winter Term 2019 56/ 76

Example: Step 1
Complete pending invocation for A
A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

time

q.enq(3)

q.enq(4) q.deq(4)q.enq(6)

Annette Bieniusa Replication and Consistency Winter Term 2019 57/ 76

Example: Step 2

Discard pending invocation for B
A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

time

q.enq(3)

q.enq(4) q.deq(4)

Annette Bieniusa Replication and Consistency Winter Term 2019 58/ 76

Example: Step 3

Construct equivalent sequential history and check if linearizable
B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

time

q.enq(3)

q.enq(4) q.deq(4)

Annette Bieniusa Replication and Consistency Winter Term 2019 59/ 76

Concurrency and Linearizability

How much concurrency does linearizability allow?
When must a method invocation block?

Focus on total methods
A method call is total if it is defined for every object state;
otherwise, it is partial.

Example:
deq() that throws empty exception
vs deq() that waits . . .

Why?
Otherwise, blocking might be unrelated to synchronization

Annette Bieniusa Replication and Consistency Winter Term 2019 60/ 76

Concurrency and Linearizability

How much concurrency does linearizability allow?
When must a method invocation block?

Focus on total methods
A method call is total if it is defined for every object state;
otherwise, it is partial.

Example:
deq() that throws empty exception
vs deq() that waits . . .

Why?
Otherwise, blocking might be unrelated to synchronization

Annette Bieniusa Replication and Consistency Winter Term 2019 60/ 76

Question

When does linearizability require a method invocation to block?

Answer: Never – Linearizability is non-blocking!

Annette Bieniusa Replication and Consistency Winter Term 2019 61/ 76

Question

When does linearizability require a method invocation to block?

Answer: Never – Linearizability is non-blocking!

Annette Bieniusa Replication and Consistency Winter Term 2019 61/ 76

Theorem: Non-blocking

Strong result:

A pending invocation of a total method is never required to wait
for another pending invocation to complete!

If method invocation A q.inv(...) is pending in history H, then there
exists a response A q:res such that H extended by A q:res is
linearizable.

Annette Bieniusa Replication and Consistency Winter Term 2019 62/ 76

Proof Sketch

Pick any linearization S of H
If S already contains invocation A q.inv(...) and response for
every method call, then we are done.
Otherwise, pick a response such that S gets extended by
A q.inv(...) and further append A q:res

Possible because object is total
This extension S′ is a linearisation of H· A q.inv(...) and hence
also a linearization of H.

Annette Bieniusa Replication and Consistency Winter Term 2019 63/ 76

Theorem: Composability

History H is linearizable if and only if for every object x, H|x is
linearizable.

Why does it matter?

Modularity
Can prove linearizability of objects in isolation
Can compose independently-implemented objects

Annette Bieniusa Replication and Consistency Winter Term 2019 64/ 76

Proof SketchDirection ⇒

For each x pick any linearization of H|x.
Let Rx be the appended missing responses to H|x and let →x be
the linearization order.
Let H ′ be H with Rx appended.

Induction on method calls in H ′

Base case: H ′ contains one method call ⇒ Trivial, right? ;)
Induction step:

For each object, let m be the last method call in H ′|x with respect
to →x.
Let G′ be H ′ with method m removed.
Because m was the last call, H ′ is equivalent to G′ ·m.
By induction hypothesis, G′ is linearizable to sequential history S′,
and H ′ and H are linearizable to S′ ·m.

Direction ⇐: Exercises
Annette Bieniusa Replication and Consistency Winter Term 2019 65/ 76

Reasoning about Linearizability: Locking

T deq() throws EmptyException {
lock.lock();
try {

if (tail == head)
throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}
}

Linearization points are when locks are released

Annette Bieniusa Replication and Consistency Winter Term 2019 66/ 76

Reasoning about Linearizability: Lock-free
class LockFreeQueue[T] {

int head = 0, tail = 0;
items = new T[capacity];

void enq(T x) {
while (tail-head == capacity) throw new FullExeption();
items[tail % capacity] = x;
tail++;

}
T deq() {

if (tail == head) throw new EmptyExeption();
T item = items[head % capacity];
head++;
return item;

}}

Linearization order is order in which head and tail fields modified
Remember that there is only one enqueuer and only one dequeuer

Annette Bieniusa Replication and Consistency Winter Term 2019 67/ 76

Strategy

Identify one atomic step where method “happens”
Critical section
Machine instruction

Doesn’t always work
Might need to define several different steps for a given method

More on this in the exercises

Annette Bieniusa Replication and Consistency Winter Term 2019 68/ 76

Alternative: Sequential Consistency(Lamport 1979)

History H is sequentially consistent if it can be extended to G by
appending zero or more responses to pending invocations
discarding other pending invocations

so that G is equivalent to a legal sequential history S

How does this differ from linerizability?

Removed: “where →G⊂→S” !
G must preserve program order in each thread, but does not need
to preserve real-time order
Can re-order non-overlapping operations done by different threads

Annette Bieniusa Replication and Consistency Winter Term 2019 69/ 76

Alternative: Sequential Consistency(Lamport 1979)

History H is sequentially consistent if it can be extended to G by
appending zero or more responses to pending invocations
discarding other pending invocations

so that G is equivalent to a legal sequential history S

How does this differ from linerizability?

Removed: “where →G⊂→S” !
G must preserve program order in each thread, but does not need
to preserve real-time order
Can re-order non-overlapping operations done by different threads

Annette Bieniusa Replication and Consistency Winter Term 2019 69/ 76

Example

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable, but sequentially consistent

Annette Bieniusa Replication and Consistency Winter Term 2019 70/ 76

Example

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable, but sequentially consistent

Annette Bieniusa Replication and Consistency Winter Term 2019 70/ 76

Theorem

Sequential consistency is not a local property (and thus not
composable).

Annette Bieniusa Replication and Consistency Winter Term 2019 71/ 76

Example

time

p.enq(x) q.enq(x) p.deq(y)

q.enq(y) p.enq(y) q.deq(x)

H|q and H|p are sequentially consistent
Combining orders imposed by operations on p and q and program
order yields cycle:

p.enq(x) → q.enq(x) → q.enq(y) → p.enq(y) → p.enq(x)

Annette Bieniusa Replication and Consistency Winter Term 2019 72/ 76

Summary

Sequential Consistency
Not composable
Harder to work with
Good way to think about hardware models

Linearizability
Operation takes effect instantaneously between invocation and
response
Uses sequential specification, locality implies composablity
Good for high level objects We will use linearizability as in the
remainder of this course unless stated otherwise.

Annette Bieniusa Replication and Consistency Winter Term 2019 73/ 76

Summary

Critical sections are an easy way to implement linearizability
Take sequential object
Make each method a critical section

But:
Blocking
No concurrency

We will look at linearizable blocking and non-blocking
implementations of objects.

Annette Bieniusa Replication and Consistency Winter Term 2019 74/ 76

Copyright

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work to “The Art of Multiprocessor Programming” and “Synchronization
Algorithms and Concurrent Programming” (but not in any way that suggests that the authors endorse you or
your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is
with a link to http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get
permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

Annette Bieniusa Replication and Consistency Winter Term 2019 75/ 76

Further reading

Herlihy, Maurice, and Jeannette M. Wing. 1990. “Linearizability: A
Correctness Condition for Concurrent Objects.” ACM Trans.
Program. Lang. Syst. 12 (3): 463–92.
https://doi.org/10.1145/78969.78972.

Lamport, Leslie. 1979. “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs.” IEEE Trans. Computers
28 (9): 690–91. https://doi.org/10.1109/TC.1979.1675439.

Annette Bieniusa Replication and Consistency Winter Term 2019 76/ 76

https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/TC.1979.1675439

	Examples
	Formal Definitions

