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Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld
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Goals of this lecture

What is a concurrent object?

How do we describe one?
[How do we implement one?] ⇒ Following lectures!
How do we tell if it is correct?
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Example: Concurrent FIFO-Queue
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Example: Concurrent FIFO-Queue
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Implementation: Lock-based Queue

class LockBasedQueue<T> {
int head, tail;
T[] items;
Lock lock;

LockBasedQueue(int capacity) {
head = 0; tail = 0;
lock = new ReentrantLock();
items = (T[]) new Object[capacity];

}
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Sketch

Initially, queue is empty: head == tail

Queue is full once head == tail - capacity
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Implementation: Dequeue

T deq() throws EmptyException {
lock.lock();
try {

if (tail == head)
throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}
}

Should be correct because modifications are mutually exclusive . . .
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Let’s get rid of the lock!

Can we give an implementation without mutual exclusions
For simplicity: Two-thread solution

One thread enqueues only
The other dequeues only
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Wait-free Two-Thread Queue
class WaitFreeQueue<T> {

int head = 0, tail = 0;
items = new T[capacity];

void enq(T x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x;
tail++;

}

T deq() {
while (tail == head); // busy-wait
T item = items[head % capacity];
head++;
return item;

}
}

Is this correct? Probably for two threads. . .
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How do we define “correctness” when modifications are not mutually
exclusive?
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Semantics for concurrent queue implementations

Need a way to specify a concurrent queue object
Need a way to prove that an algorithm implements the object’s
specification
Let’s talk about object specifications!
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Correctness and Progress

In a concurrent setting, we need to specify both the safety and
the liveness properties of an object.
Need a way to define

when an implementation is correct
the conditions under which it guarantees progress

Let’s begin with correctness!
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Sequential Objects

Each object has a state
Usually given by a set of fields
Queue example: sequence of items

Each object has a set of methods
Only way to manipulate state
Queue example: enq and deq methods

Annette Bieniusa Replication and Consistency Winter Term 2019 14/ 76



Sequential Specifications

If (precondition)
the object is in such-and-such a state before you call the method,

Then (postcondition)
the method will return a particular value
or throw a particular exception.

and (postcondition, con’t)
the object will be in some other state when the method returns
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Example: Pre- and Post-Conditions for Deque (Part 1)

Precondition:
Queue is non-empty

Postcondition:
Returns first item in queue

Postcondition:
Removes first item in queue
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Example: Pre- and Post-Conditions for Deque (Part 2)

Precondition:
Queue is empty

Postcondition:
Throws Empty exception

Postcondition:
Queue state unchanged
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Why Sequential Specifications Totally Rock

Interactions among methods captured by side-effects on object
state

State meaningful between method calls
Documentation size linear in number of methods

Each method described in isolation
Can add new methods

Without changing descriptions of old methods

Annette Bieniusa Replication and Consistency Winter Term 2019 18/ 76



What About Concurrent Specifications?

Methods?
Documentation?
Adding new methods (i.e. compositionality)?
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Methods Take Time

time
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Sequential vs Concurrent

Sequential
Methods take time? Who knew?

Concurrent
Method call is not an event.
Method call is an interval that starts with an invocation event
and ends with a response event.
A method call is pending if its call event has occurred, but not its
response event.
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Concurrent Methods take overlapping time

time
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Sequential vs Concurrent

Sequential
Object needs meaningful state only between method calls

Concurrent
Because method calls overlap, object might never be “between
method calls”
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Sequential vs Concurrent

Sequential
Each method described in isolation
Can add new methods without affecting older methods

Concurrent
Everything can potentially interact with everything else
Must characterize all possible interactions with concurrent calls
What if two enqs overlap?
Two deqs? enq and deq? . . .
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The BIG Question

What does it mean for a concurrent object to be correct?
What is a concurrent FIFO queue?

FIFO means strict temporal order
Concurrent means ambiguous temporal order
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Intuition: Concurrency with Mutual exclusion

time

q.deq

q.enq

Behavior is actually “sequential”
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Linearizability

Each method should “take effect” instantaneously between
invocation and response events
Object is correct if this “sequential” behavior is correct
Any such concurrent object is Linearizable™
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Is it really about the object?

Recall: Each method should “take effect” instantaneously between
invocation and response events
Sounds like a property of an execution . . .
A linearizable object is one all of whose possible executions are
linearizable
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Examples
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Example 1

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (if linearization point of q.enq(x) is before linearization
point of q.enq(y))
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Example 2

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable (q.enq(y) cannot be linearized before q.enq(x))
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Example 3

time

q.enq(x)

q.deq(x)

⇒ Linearizable
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Example 4

time

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

⇒ Linearizable (multiple orders possible)
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Read/Write Register Example 1

time

write(0) read(1) write(2)

write(1) read(0)

⇒ Not linearizable: write(1) happened before read(0)
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Read/Write Register Example 2

time

write(0) read(1) write(2)

write(1) read(1)

⇒ Not linearizable

write(1) happened beforewrite(2)‘,
and write(2) happened before read(1)
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Read/Write Register Example 3

time

write(0) write(2)

write(1) read(1)

⇒ Linearizable
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Formal Definitions
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Talking about executions

Why?
Can’t we specify the linearization point of each operation without
describing an execution?

Not Always
In some cases, linearization point depends on the execution
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Executions

Split method calls into two events:

Invocation
method name & args
q.enq(x)

Response
result or exception
q.enq(x) returns void

q.deq() returns x

q.deq() throws empty
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Notation

Invocation
A q.enq(x)

Response
A q: void
A q: empty()

Method is implicit
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History
A q.enq(3)
A q: void
A q.enq(5)
B p.enq(4)
B p: void
B q.deq()
B q: 3

Definitions
A history H is a finite sequence of method invocation and
response events.
A subhistory of a history H is a subsequents of the events in H.
A response matches an invocation if they have the same object
and thread.
A method call in a history H is a pair of an invocation and the
next matching response in H.
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Object Projections

H|q =
A q.enq(3)
A q: void
A q.enq(5)

B q.deq()
B q: 3

H|p =
B p.enq(4)
B p: void
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Thread Projections

H|A =
A q.enq(3)
A q: void
A q.enq(5)

H|B =
B p.enq(4)
B p: void
B q.deq()
B q: 3
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Complete Subhistory

complete(H) =
A q.enq(3)
A q: void
//A q.enq(5) -> Discard pending invocations
B p.enq(4)
B p: void
B q.deq()
B q: 3

The complete subhistory is the subsequence of H consisting of
all matching invocations and responses.
An invocation is pending if it has no matching response.
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Sequential Histories

Method calls of different threads do not interleave
Final pending invocation ok

A q.enq(3)
A q:void // matched
B p.enq(4)
B p:void // matched
B q.deq()
B q:3 // matched
A q:enq(5)

A history H is sequential if the first event of H is an invocation and
each invocation, except possibly the last, is immediately followed by a
matching response.
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Well-formed Histories

H =
A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

A history H is well-formed if each thread subhistory is sequential.
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Equivalent Histories
H =
A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

G =
A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|A = G|A
H|B = G|B

Two histories H and G are equivalent if for every thread T ,
H|T = G|T .
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Sequential Specifications

A sequential specification is some way of telling whether a
single-thread, single-object history is legal.
For example:

Pre- and post-conditions
But plenty of other techniques exist

Here: A sequential specification for an object is a set of sequential
histories for that object.

A sequential (multi-object) history H is legal if for every object x,
H|x is in the sequential spec for x.
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Recall: Precedence

Given history H and method executions m0 and m1 in H, we say
m0 →H m1, if m0 precedes m1.
Relation m0 →H m1 is a

Partial order
Total order if H is sequential

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response event
precedes invocation
event.
Example:
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Linearizability(Herlihy and Wing 1990)

A history H is linearizable if it can be extended to some history G by
appending zero or more responses to pending invocations
and there is a legal sequential history S such that complete(G) is
equivalent to S and →G⊂→S .
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What is →G⊂→S ?

→G = {a→ c, b→ c}
→S = {a→ c, b→ c, a→ b}

time

a

b c

If method call m0 precedes m1 in G, then the same is true in S.
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Remarks

Some pending invocations took effect, so keep them
Discard the rest
Condition →G⊂→S means that S respects “real-time order” of G
⇒ Restriction on S
When picking linearization points, they need to be within the
intervals
Only for unordered intervals, the order can be arbitrary
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Example

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

time

q.enq(3)

q.enq(4) q.deq(4)q.enq(6)
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Example: Step 1
Complete pending invocation for A
A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

time

q.enq(3)

q.enq(4) q.deq(4)q.enq(6)
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Example: Step 2

Discard pending invocation for B
A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

time

q.enq(3)

q.enq(4) q.deq(4)
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Example: Step 3

Construct equivalent sequential history and check if linearizable
B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

time

q.enq(3)

q.enq(4) q.deq(4)
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Concurrency and Linearizability

How much concurrency does linearizability allow?
When must a method invocation block?

Focus on total methods
A method call is total if it is defined for every object state;
otherwise, it is partial.

Example:
deq() that throws empty exception
vs deq() that waits . . .

Why?
Otherwise, blocking might be unrelated to synchronization

Annette Bieniusa Replication and Consistency Winter Term 2019 60/ 76



Concurrency and Linearizability

How much concurrency does linearizability allow?
When must a method invocation block?

Focus on total methods
A method call is total if it is defined for every object state;
otherwise, it is partial.

Example:
deq() that throws empty exception
vs deq() that waits . . .

Why?
Otherwise, blocking might be unrelated to synchronization

Annette Bieniusa Replication and Consistency Winter Term 2019 60/ 76



Question

When does linearizability require a method invocation to block?

Answer: Never – Linearizability is non-blocking!
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Theorem: Non-blocking

Strong result:

A pending invocation of a total method is never required to wait
for another pending invocation to complete!

If method invocation A q.inv(...) is pending in history H, then there
exists a response A q:res such that H extended by A q:res is
linearizable.
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Proof Sketch

Pick any linearization S of H
If S already contains invocation A q.inv(...) and response for
every method call, then we are done.
Otherwise, pick a response such that S gets extended by
A q.inv(...) and further append A q:res

Possible because object is total
This extension S′ is a linearisation of H· A q.inv(...) and hence
also a linearization of H.
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Theorem: Composability

History H is linearizable if and only if for every object x, H|x is
linearizable.

Why does it matter?

Modularity
Can prove linearizability of objects in isolation
Can compose independently-implemented objects
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Proof SketchDirection ⇒

For each x pick any linearization of H|x.
Let Rx be the appended missing responses to H|x and let →x be
the linearization order.
Let H ′ be H with Rx appended.

Induction on method calls in H ′

Base case: H ′ contains one method call ⇒ Trivial, right? ;)
Induction step:

For each object, let m be the last method call in H ′|x with respect
to →x.
Let G′ be H ′ with method m removed.
Because m was the last call, H ′ is equivalent to G′ ·m.
By induction hypothesis, G′ is linearizable to sequential history S′,
and H ′ and H are linearizable to S′ ·m.

Direction ⇐: Exercises
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Reasoning about Linearizability: Locking

T deq() throws EmptyException {
lock.lock();
try {

if (tail == head)
throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}
}

Linearization points are when locks are released
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Reasoning about Linearizability: Lock-free
class LockFreeQueue[T] {

int head = 0, tail = 0;
items = new T[capacity];

void enq(T x) {
while (tail-head == capacity) throw new FullExeption();
items[tail % capacity] = x;
tail++;

}
T deq() {

if (tail == head) throw new EmptyExeption();
T item = items[head % capacity];
head++;
return item;

}}

Linearization order is order in which head and tail fields modified
Remember that there is only one enqueuer and only one dequeuer
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Strategy

Identify one atomic step where method “happens”
Critical section
Machine instruction

Doesn’t always work
Might need to define several different steps for a given method

More on this in the exercises
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Alternative: Sequential Consistency(Lamport 1979)

History H is sequentially consistent if it can be extended to G by
appending zero or more responses to pending invocations
discarding other pending invocations

so that G is equivalent to a legal sequential history S

How does this differ from linerizability?

Removed: “where →G⊂→S” !
G must preserve program order in each thread, but does not need
to preserve real-time order
Can re-order non-overlapping operations done by different threads
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Example

time

q.enq(x) q.deq(y)

q.enq(y)

⇒ Not linearizable, but sequentially consistent
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Theorem

Sequential consistency is not a local property (and thus not
composable).
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Example

time

p.enq(x) q.enq(x) p.deq(y)

q.enq(y) p.enq(y) q.deq(x)

H|q and H|p are sequentially consistent
Combining orders imposed by operations on p and q and program
order yields cycle:

p.enq(x) → q.enq(x) → q.enq(y) → p.enq(y) → p.enq(x)
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Summary

Sequential Consistency
Not composable
Harder to work with
Good way to think about hardware models

Linearizability
Operation takes effect instantaneously between invocation and
response
Uses sequential specification, locality implies composablity
Good for high level objects We will use linearizability as in the
remainder of this course unless stated otherwise.
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Summary

Critical sections are an easy way to implement linearizability
Take sequential object
Make each method a critical section

But:
Blocking
No concurrency

We will look at linearizable blocking and non-blocking
implementations of objects.
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Copyright

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work to “The Art of Multiprocessor Programming” and “Synchronization
Algorithms and Concurrent Programming” (but not in any way that suggests that the authors endorse you or
your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is
with a link to http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get
permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
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Further reading

Herlihy, Maurice, and Jeannette M. Wing. 1990. “Linearizability: A
Correctness Condition for Concurrent Objects.” ACM Trans.
Program. Lang. Syst. 12 (3): 463–92.
https://doi.org/10.1145/78969.78972.

Lamport, Leslie. 1979. “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs.” IEEE Trans. Computers
28 (9): 690–91. https://doi.org/10.1109/TC.1979.1675439.
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