
Replication and Consistency
04 Foundations of Shared Memory

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Winter Term 2019
Annette Bieniusa Replication and Consistency Winter Term 2019 1/ 55

Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency Winter Term 2019 2/ 55

Last time

Defined concurrent objects using linearizability and sequential
consistency
Fact: Implemented linearizable objects (Two-thread FIFO Queue)
in read-write memory without mutual exclusion
But: Hardware does not provide linearizable read-write memory

What is the weakest form of communication that supports mutual
exclusion?
What is the weakest shared object that allows shared-memory
computation?

Annette Bieniusa Replication and Consistency Winter Term 2019 3/ 55

The Turing Machine

Mathematical model of computation
Helped us understand what is and is not computable on a
sequential machine
Efficiency (mostly) irrelevant

Annette Bieniusa Replication and Consistency Winter Term 2019 4/ 55

Shared Memory Computability?

Mathematical model of concurrent computation
What is (and is not) concurrently computable
Efficiency (mostly) irrelevant

Foundations of Shared Memory
To understand modern multiprocessors we need to ask some basic

questions:
What is the weakest useful form of shared memory?

What can it do?
What can’t it do?

Annette Bieniusa Replication and Consistency Winter Term 2019 5/ 55

Register(Lamport 1986)

interface Register<T> {
public T read();
public void write(T v);

}

A single memory location is (historically) named register.
Holds a (binary) value
Can be read and written
In the following, type T is Boolean or m-bit Integer

Annette Bieniusa Replication and Consistency Winter Term 2019 6/ 55

Single-reader/Single-writer Register (SRSW)

Annette Bieniusa Replication and Consistency Winter Term 2019 7/ 55

Multiple-reader/Single-writer Register (MRSW)

Annette Bieniusa Replication and Consistency Winter Term 2019 8/ 55

Multiple-reader/Multiple-writer Register (MRMW)

Annette Bieniusa Replication and Consistency Winter Term 2019 9/ 55

Safe Register

A single-writer, multi-reader register implementation is safe if a read
that does not overlap a write returns the value written by the most
recent write.

When reads and writes don’t overlap:

write(1001)

read(1001)

Annette Bieniusa Replication and Consistency Winter Term 2019 10/ 55

Safe Register

When reads and writes do overlap:

write(1001)

read(0000)
read(0001)

...
read(1111)

////////////////read(#*+=)

Annette Bieniusa Replication and Consistency Winter Term 2019 11/ 55

Regular Register

A single-writer, multi-reader register implementation is regular if it is
safe and a read that overlaps with the i-th write call returns either the
ith or (i− 1)th value.

write(0) write(1)

read(1) read(0)

Annette Bieniusa Replication and Consistency Winter Term 2019 12/ 55

Atomic Register

A single-writer, multi-reader register implementation is atomic if it is
linearizable to a sequential safe register.

write(1001) write(1010) read(1010)

read(1001) read(1010)

Annette Bieniusa Replication and Consistency Winter Term 2019 13/ 55

Summary: Classification of Registers

Annette Bieniusa Replication and Consistency Winter Term 2019 14/ 55

Weakest Register

Safe Boolean SRSW Register

Annette Bieniusa Replication and Consistency Winter Term 2019 15/ 55

The weakest Register is quite powerful!

From the SRSW safe Boolean register, we can construct:

All the other registers
Mutual exclusion

But not everything!

Consensus hierarchy (⇒ next lecture!)

Annette Bieniusa Replication and Consistency Winter Term 2019 16/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 17/ 55

Safe Boolean MRSW from Safe Boolean SRSW
Each thread has own safe SRSW register
When writing, update (= write) each thread’s register one at a
time
Read own register only

Annette Bieniusa Replication and Consistency Winter Term 2019 18/ 55

Safe Boolean MRSW from Safe Boolean SRSW

class SafeBoolMRSWRegister implements Register<Boolean> {

private SafeBoolSRSWRegister[] r = new SafeBoolSRSWRegister[N];

public void write(boolean x) {
for (int j = 0; j < N; j++)
r[j].write(x);

}

public boolean read() {
int i = ThreadID.get();
return r[i].read();

}
}

Annette Bieniusa Replication and Consistency Winter Term 2019 19/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 20/ 55

Regular Boolean MRSW from Safe Boolean MRSW
OK to read 0 or 1 if read is concurrent with a write that changed
the value
Must return the old if the value written is the same as the old one
Trick: Remember the old value!

Question
Does the construction also work for a safe multi-valued MRSW?
⇒ No! Boolean registers return 0 or 1 even if register value changes.
But safe m-valued register can return value in range other than old or
new when value changes.

Annette Bieniusa Replication and Consistency Winter Term 2019 21/ 55

Regular Boolean MRSW from Safe Boolean MRSW
OK to read 0 or 1 if read is concurrent with a write that changed
the value
Must return the old if the value written is the same as the old one
Trick: Remember the old value!

Question
Does the construction also work for a safe multi-valued MRSW?

⇒ No! Boolean registers return 0 or 1 even if register value changes.
But safe m-valued register can return value in range other than old or
new when value changes.

Annette Bieniusa Replication and Consistency Winter Term 2019 21/ 55

Regular Boolean MRSW from Safe Boolean MRSW
OK to read 0 or 1 if read is concurrent with a write that changed
the value
Must return the old if the value written is the same as the old one
Trick: Remember the old value!

Question
Does the construction also work for a safe multi-valued MRSW?
⇒ No! Boolean registers return 0 or 1 even if register value changes.
But safe m-valued register can return value in range other than old or
new when value changes.

Annette Bieniusa Replication and Consistency Winter Term 2019 21/ 55

Regular Boolean MRSW from Safe Boolean MRSW
class RegBoolMRSWRegister implements Register<Boolean> {

private ThreadLocal<Boolean> old; // local to the writer,
cheating here on Java ...

private SafeBoolMRSWRegister value; // actual value

public void write(boolean x) {
if (old != x) {
value.write(x);
old = x;
}

}

public boolean read() {
return value.read();

}
}

Annette Bieniusa Replication and Consistency Winter Term 2019 22/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 23/ 55

MRSW Regular M-valued from MRSW Regular Boolean
Unary representation of value: bit[i] means value i

When writing, set bit x and clear bits from higher to lower
When reading, scan from lower to higher and return first bit set

Annette Bieniusa Replication and Consistency Winter Term 2019 24/ 55

MRSW Regular M-valued from MRSW Regular Boolean

class RegMRSWRegister<T> implements Register<T> {
private RegBoolMRSWRegister[M] bit;

public void write(int x) {
this.bit[x].write(true);
for (int i=x-1; i>=0; i--)
this.bit[i].write(false);

}

public int read() {
for (int i=0; i < M; i++)
if (this.bit[i].read())
return i;

}
}

Annette Bieniusa Replication and Consistency Winter Term 2019 25/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 26/ 55

Detour: SRSW Atomic from SRSW Regular

time

write(1234) write(5678)

read(5678)

read(1234)read(5678)

When does the behavior of atomic and regular differ?

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 55

Detour: SRSW Atomic from SRSW Regular

time

write(1234) write(5678)

read(5678)read(5678)

read(1234)read(5678)

When does the behavior of atomic and regular differ?

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 55

Detour: SRSW Atomic from SRSW Regular

time

write(1234) write(5678)

read(5678)read(5678)read(1234)

read(5678)

When does the behavior of atomic and regular differ?

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 55

Detour: SRSW Atomic from SRSW Regular

time

write(1234) write(5678)

read(5678)read(5678)read(1234)read(5678)

When does the behavior of atomic and regular differ?

Annette Bieniusa Replication and Consistency Winter Term 2019 27/ 55

Trick: Timestamped Values

Writer writes value and stamp together
Reader saves last read (value + stamp) and returns new value
only if new value has a higher stamp

Annette Bieniusa Replication and Consistency Winter Term 2019 28/ 55

SRSW Atomic from SRSW Regular

time

write(1:45, 1234) write(2:00, 5678)

read(1:45, 1234)read(2:00, 5678)

Since (1:45, 1234) is more recent than (2:00, 5678), the thread
returns its prior read value 5678.

Annette Bieniusa Replication and Consistency Winter Term 2019 29/ 55

Towards Atomic Single Reader to Atomic Multi-Reader

thread (stamp, value)

T0 (2:00, 5678)

T1 (2:00, 5678)

T2 (1:45, 1234)

Writer starts writing at 2:00

After updating the entry for reader thread T1, the writer falls
asleep. . . .
When T1 reads its entry, it sees the updated value
When later T2 reads its entry, it sees the old value

⇒ Not atomic!

Annette Bieniusa Replication and Consistency Winter Term 2019 30/ 55

Towards Atomic Single Reader to Atomic Multi-Reader
thread T0 T1 T2

T0 (2:00, 5678) (1:45, 1234) (1:45, 1234)

T1 (2:00, 5678) (1:45, 1234) (1:45, 1234)

T2 (1:45, 1234) (1:45, 1234) (1:45, 1234)

Writer writes its own column
Reader reads its own row and updates all entries in its own
column to notify others about updates
In the example, T0 starts updating its column
Now, T2 reads the stamp+value updated by T1 and returns the
new value
The “bad” case only happens if one read happens before the
other; for concurrent reads, both old and new value are ok

Annette Bieniusa Replication and Consistency Winter Term 2019 31/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 32/ 55

Multi-Writer Atomic from Multi-Reader

Each writer reads all entries, then writes entry with strictly larger
timestamp to its own register
Readers read all entries and return maximum wrt lexicographic
order (like Bakery Algorithm)

Annette Bieniusa Replication and Consistency Winter Term 2019 33/ 55

Quizz: Is this execution atomic (= linearizable)?

Here: Only timestamps!

time

write(1) read(max=2) write(4)

write(2) write(3) read(max=3)

read(max=1) write(2) read(max=4)

Annette Bieniusa Replication and Consistency Winter Term 2019 34/ 55

Remarks

First, order write by time stamp
Later writes must have strictly greater stamps
Concurrent writes can have the same stamps

Then, order reads such that each read’s linearization point is right
after the timestamp that it read for max

Later reads must read the same or a greater stamp

Annette Bieniusa Replication and Consistency Winter Term 2019 35/ 55

Roadmap

SRSW safe Boolean
MRSW safe Boolean
MRSW regular Boolean
MRSW regular M-valued
MRSW atomic M-valued
MRMW atomic M-valued
Atomic snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 36/ 55

Atomic Snapshots
Problem description:

Assume you have an array of SWMR atomic registers
Take instantaneous snapshot of all registers without “stopping the
world” (i.e. wait-free)

interface Snapshot {
public int update(int v); // Thread i writes v to its register
public int[] scan(); // Instantaneous snapshot of all

threads' registers
}

Problem
Incompatible concurrent collects
Result not linearizable

Annette Bieniusa Replication and Consistency Winter Term 2019 37/ 55

Simple Snapshot
Idea: Use clean collect (i.e. collect during which nothing
changed)
Put increasing labels (= timestamps) on each entry
Collect twice

If both results are identical, we are done
Otherwise, try again

Annette Bieniusa Replication and Consistency Winter Term 2019 38/ 55

Simple Snapshot: Update

class SimpleSnapshot implements Snapshot {
private AtomicMRSWRegister[] register;

public void update(int value) {
int i = Thread.myIndex();
LabeledValue oldValue = register[i].read();
LabeledValue newValue =

new LabeledValue(oldValue.label+1, value);
register[i].write(newValue);

}
...
}

Annette Bieniusa Replication and Consistency Winter Term 2019 39/ 55

Simple Snapshot: Scan

public int[] scan() {
LabeledValue[] oldCopy, newCopy;
oldCopy = collect();
collect: while (true) {

newCopy = collect();
if (!equals(oldCopy, newCopy)) {
oldCopy = newCopy;
continue collect;

}
}
return getValues(newCopy);

}

Annette Bieniusa Replication and Consistency Winter Term 2019 40/ 55

Simple Snapshot: Collect

private LabeledValue[] collect() {
LabeledValue[] copy = new LabeledValue[n];
for (int j = 0; j < n; j++)

copy[j] = this.register[j].read();
return copy;

}

Annette Bieniusa Replication and Consistency Winter Term 2019 41/ 55

Properties of Simple Snapshot

Linearizable
update is wait-free

No unbounded loops
But scan can starve if interrupted by concurrent update

Annette Bieniusa Replication and Consistency Winter Term 2019 42/ 55

Wait-free Snapshot

Add a scan before every update
Write resulting snapshot together with update value
If scan is continuously interrupted by updates, scan can take the
update’s snapshot

Annette Bieniusa Replication and Consistency Winter Term 2019 43/ 55

Idea

If A’s scan observes that B moved twice, then B completed a full
update while A’s scan was in progress

Annette Bieniusa Replication and Consistency Winter Term 2019 44/ 55

Idea

B’s first update must have been written during the first collect
Scan of B’s second update must be within the interval of A’s scan
So A can steal result of B’s scan!

Why can’t we use the scan of B’s first update?

Annette Bieniusa Replication and Consistency Winter Term 2019 45/ 55

Idea

B’s first update must have been written during the first collect
Scan of B’s second update must be within the interval of A’s scan
So A can steal result of B’s scan!

Why can’t we use the scan of B’s first update?

Annette Bieniusa Replication and Consistency Winter Term 2019 45/ 55

Once is not enough

Another thread might have interfered before A’s scan started!
Insight: If we collect n times, some thread must have obtained a
clean scan (pigeon-hole principle)

Annette Bieniusa Replication and Consistency Winter Term 2019 46/ 55

Wait-Free Scan

Each scan gets a clean collect or is interrupted while taking its
scan
Scan of the interrupting thread could also have been interrupted
etc.
But this can however happen only n− 1 times after which the are
no more threads that can inturrupt

⇒ Scan is wait-free

Annette Bieniusa Replication and Consistency Winter Term 2019 47/ 55

Wait-free Snapshot: Label

class SnapValue {
int label; // counter as timestamp, incremented with each

snapshot
int value; // actual value
int[] snap; // most recent snapshot

}

Annette Bieniusa Replication and Consistency Winter Term 2019 48/ 55

Wait-free Snapshot: Update

public void update(int value) {
int i = Thread.myIndex();
// take scan
int[] snap = this.scan();
SnapValue oldValue = r[i].read();
// label value with scanned snap
SnapValue newValue =

new SnapValue(oldValue.label+1, value, snap);
r[i].write(newValue);

}

Annette Bieniusa Replication and Consistency Winter Term 2019 49/ 55

Wait-free Snapshot: Scan
public int[] scan() {
SnapValue[] oldCopy, newCopy;
// keep track of who moved
boolean[] moved = new boolean[n];
// repeat double collect
oldCopy = collect();
collect: while (true) {

newCopy = collect();
// if missmatch detected... (next slide)
for (int j = 0; j < n; j++) {
if (oldCopy[j].label != newCopy[j].label) {
... // see next slides!
}

}
return getValues(newCopy);

}
}

Annette Bieniusa Replication and Consistency Winter Term 2019 50/ 55

Wait-free Snapshot: Mismatch detected

if (oldCopy[j].label != newCopy[j].label) {
if (moved[j]) { // if second move

return newCopy[j].snap; // steal its second snapshot!
} else {

moved[j] = true; // remember move
oldCopy = newCopy;
continue collect;

}
}

Annette Bieniusa Replication and Consistency Winter Term 2019 51/ 55

Wait-free Snapshot: Properties

Uses unbounded counters
Can be replaced with 2 bits

Assumes SWMR registers for labels
Can be extended to MRMW

Annette Bieniusa Replication and Consistency Winter Term 2019 52/ 55

Summary

Construction of MRMW M-valued snapshot objects form SRSW
binary safe registers
What are open research directions here?

Atomic writes to multiple locations!
Transactional memory (TM)

Annette Bieniusa Replication and Consistency Winter Term 2019 53/ 55

Copyright

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work to “The Art of Multiprocessor Programming” and “Synchronization
Algorithms and Concurrent Programming” (but not in any way that suggests that the authors endorse you or
your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is
with a link to http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get
permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

Annette Bieniusa Replication and Consistency Winter Term 2019 54/ 55

Further reading

Lamport, Leslie. 1986. “On Interprocess Communication. Part II:
Algorithms.” Distributed Computing 1 (2): 86–101.
https://doi.org/10.1007/BF01786228.

Annette Bieniusa Replication and Consistency Winter Term 2019 55/ 55

https://doi.org/10.1007/BF01786228

