
Replication and Consistency
06 The Relative Power of Synchronization Operations

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Annette Bieniusa Replication and Consistency 1/ 45



Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency 2/ 45



Motivation

Annette Bieniusa Replication and Consistency 3/ 45



Last lecture: Foundations of Shared Memory

To understand modern multiprocessors we need to ask some basic
questions:

What is the weakest useful form of shared memory?

What concurrent problem is (and what isn’t) computable under a
given memory model?1

1Efficiency is mostly irrelevant here.
Annette Bieniusa Replication and Consistency 4/ 45



Last lecture: From the Weakest Register to Atomic
Snapshot!

But some synchronization problems require more powerful registers!

Annette Bieniusa Replication and Consistency 5/ 45



Last lecture: From the Weakest Register to Atomic
Snapshot!

But some synchronization problems require more powerful registers!

Annette Bieniusa Replication and Consistency 5/ 45



Wait-Free Implementations

Strongest non-blocking progress guarantee
For every operation / method call, there is a bound on the
number of steps that the algorithm will take before the operation
completes

It implies that the algorithm does not rely on mutual exclusion!

Annette Bieniusa Replication and Consistency 6/ 45



Wait-Free Implementations

Strongest non-blocking progress guarantee
For every operation / method call, there is a bound on the
number of steps that the algorithm will take before the operation
completes
It implies that the algorithm does not rely on mutual exclusion!

Annette Bieniusa Replication and Consistency 6/ 45



The Consensus Problem

Annette Bieniusa Replication and Consistency 7/ 45



The Consensus Problem

Each process pi proposes a value vi

All processes have to agree on some common value v that is the
initial value of some pi

Properties of Consensus:

Uniform Agreement: Every process must decide on the same value.
Integrity: Every process decides at most one value, and if it decides
some value, then it must have been proposed by some process.
Termination: All processes eventually reach a decision.
Validity: If all processes propose the same value v, then all
processes decide v.

Annette Bieniusa Replication and Consistency 8/ 45



The Consensus Problem

Each process pi proposes a value vi

All processes have to agree on some common value v that is the
initial value of some pi

Properties of Consensus:

Uniform Agreement: Every process must decide on the same value.
Integrity: Every process decides at most one value, and if it decides
some value, then it must have been proposed by some process.
Termination: All processes eventually reach a decision.
Validity: If all processes propose the same value v, then all
processes decide v.

Annette Bieniusa Replication and Consistency 8/ 45



Implementing Consensus based on FIFO Queues

Assume we have a linearizable FIFO-Queue for two dequeuers.
How can we use it to implement consensus for two threads?

Annette Bieniusa Replication and Consistency 9/ 45



Theorem

Asynchronous computability is fundamentally different from
Turing computability!
Adapted version of fundamental theorem by Fisher, Lynch,
Peterson for distributed computing (Fischer, Lynch, and Paterson
1985) which received the Dijkstra prize for the most influential
paper in distributed computing in 2001

There is no wait-free (deterministic) implementation of n-thread
consensus (n > 1) from read-write registers.

Annette Bieniusa Replication and Consistency 10/ 45



Proof Strategy

Assume that there is a wait-free (deterministic) implementation
. . .
Reason about the properties of any such protocol
Derive a contradiction ⇒ Done :)

Suffices to consider n = 2 processes and binary consensus
(i.e. proposed values are either 0 or 1)

Annette Bieniusa Replication and Consistency 11/ 45



Proof Strategy

Assume that there is a wait-free (deterministic) implementation
. . .
Reason about the properties of any such protocol
Derive a contradiction ⇒ Done :)

Suffices to consider n = 2 processes and binary consensus
(i.e. proposed values are either 0 or 1)

Annette Bieniusa Replication and Consistency 11/ 45



Essence of wait-free computation
Either A or B moves
“Moving” here means

reads a register, or
writes a register

For two processes, wait-free computations can be modeled as tree

Annette Bieniusa Replication and Consistency 12/ 45



Decision Values

Annette Bieniusa Replication and Consistency 13/ 45



Univalent States: Single Value Possible

Annette Bieniusa Replication and Consistency 14/ 45



Bivalent Statues: Both Values Possible

Annette Bieniusa Replication and Consistency 15/ 45



Proof Part 1: Some initial state is bivalent

If both processors input 0:

All executions must decide on 0
Including the solo execution by process A

If both processors input 1:

All executions must decide on 1
Including the solo execution by process B

Annette Bieniusa Replication and Consistency 16/ 45



Proof Part 1: Some initial state is bivalent

If both processors input 0:

All executions must decide on 0
Including the solo execution by process A

If both processors input 1:

All executions must decide on 1
Including the solo execution by process B

Annette Bieniusa Replication and Consistency 16/ 45



Proof Part 1: Some initial state is bivalent

If the inputs differ:

Solo execution of A decides 0
Solo execution of B decides 1
Bivalent state!

Annette Bieniusa Replication and Consistency 17/ 45



Critical State

Annette Bieniusa Replication and Consistency 18/ 45



Proof Part 2: Some state must be a critical state

Starting from a bivalent initial state, the protocol will reach a
critical state

Otherwise we could stay bivalent forever

Annette Bieniusa Replication and Consistency 19/ 45



Proof Part 3: Properties of read-write registers

Lets look at executions that:

Start from a critical state
In which processes cause state to become univalent by next step,
that is reading or writing to same/different registers
End within a finite number of steps deciding either 0 or 1

Show that there are no critical states!

⇒ Contradiction

Annette Bieniusa Replication and Consistency 20/ 45



Possible Interactions

Annette Bieniusa Replication and Consistency 21/ 45



Case 1: Some Thread Reads

Annette Bieniusa Replication and Consistency 22/ 45



Case 2: Threads write distinct registers

Annette Bieniusa Replication and Consistency 23/ 45



Case 3: Threads write same register

Annette Bieniusa Replication and Consistency 24/ 45



Implications

Corollary
It is impossible to implement a two-dequeuer wait-free FIFO queue
from read/write registers.

Annette Bieniusa Replication and Consistency 25/ 45



Measuring Synchronization Power

An object X has consensus number n if it can be used to solve
n-thread consensus.

Take any number of instances of X together with atomic
read/write registers and implement n-thread consensus
But not (n+1)-thread consensus

If you can implement X from Y and X has consensus number c, then
Y has consensus number at least c.

Annette Bieniusa Replication and Consistency 26/ 45



Consensus Protocol for N threads and integer values

// For N threads:

abstract class ConsensusProtocol {

protected int[] proposed = new int[N];

private void propose(int value) {
proposed[ThreadID.get()] = value;

}

abstract int decide(int value);

}

Annette Bieniusa Replication and Consistency 27/ 45



Read-Modify-Write Registers
public abstract class RMWRegister {

private int value;

// here: synchronized indicates atomic execution of all
instructions in the method; actually implemented using a
hardware primitive

public synchronized int getAndMumble() {
// return prior value
int prior = this.value;

// apply function to current value and replace
this.value = mumble(this.value);

return prior;
}

}

Annette Bieniusa Replication and Consistency 28/ 45



Example: getAndSet

abstract class RMWRegister {

private int value;

public synchronized int getAndSet(int v) {
int prior = this.value;
this.value = v;
return prior;

}
...

}

Annette Bieniusa Replication and Consistency 29/ 45



Example: getAndIncrement

abstract class RMWRegister {

private int value;

public synchronized int getAndIncrement() {
int prior = this.value;
this.value = this.value + 1;
return prior;

}
...

}

Annette Bieniusa Replication and Consistency 30/ 45



Example: getAndAdd

abstract class RMWRegister {

private int value;

public synchronized int getAndAdd(int a) {
int prior = this.value;
this.value = this.value + a;
return prior;

}
...

}

Annette Bieniusa Replication and Consistency 31/ 45



Example: get

abstract class RMWRegister {

private int value;

public synchronized int get() {
int prior = this.value;
// this.value = this.value;
return prior;

}
...

}

Annette Bieniusa Replication and Consistency 32/ 45



Example: compareAndSet

abstract class RMWRegister {

private int value;

public synchronized boolean compareAndSet(int expected,
int update) {

int prior = this.value;
if (this.value == expected) {

this.value = update;
return true;

}
return false;

}
...

}

Annette Bieniusa Replication and Consistency 33/ 45



Definition

An RMW method with function mumble(x) is non-trivial if there exists
a value v such that v != mumble(v).

Example:

getAndIncrement is non-trivial
get is trivial

Theorem
Any non-trivial RMW object has consensus number at least 2.

Annette Bieniusa Replication and Consistency 34/ 45



Definition

An RMW method with function mumble(x) is non-trivial if there exists
a value v such that v != mumble(v).

Example:

getAndIncrement is

non-trivial
get is trivial

Theorem
Any non-trivial RMW object has consensus number at least 2.

Annette Bieniusa Replication and Consistency 34/ 45



Definition

An RMW method with function mumble(x) is non-trivial if there exists
a value v such that v != mumble(v).

Example:

getAndIncrement is non-trivial
get is

trivial

Theorem
Any non-trivial RMW object has consensus number at least 2.

Annette Bieniusa Replication and Consistency 34/ 45



Definition

An RMW method with function mumble(x) is non-trivial if there exists
a value v such that v != mumble(v).

Example:

getAndIncrement is non-trivial
get is trivial

Theorem
Any non-trivial RMW object has consensus number at least 2.

Annette Bieniusa Replication and Consistency 34/ 45



Proof Sketch: Implementing 2-thread consensus with RMW
class RMWConsensus extends ConsensusProtocol {

// x is arbitrary fixed value with mumble(x) != x
private RMWRegister r = new RMWRegister(x);

public int decide(int value) {
propose(value);

// first thread reaching the getAndMumble reads x
if (r.getAndMumble() == x)
return proposed[ThreadID.get()];

else
return proposed[1 - ThreadID.get()];

}
}

Question
Why doesn’t this construction work for more than 2 threads?

Annette Bieniusa Replication and Consistency 35/ 45



Proof Sketch: Implementing 2-thread consensus with RMW
class RMWConsensus extends ConsensusProtocol {

// x is arbitrary fixed value with mumble(x) != x
private RMWRegister r = new RMWRegister(x);

public int decide(int value) {
propose(value);

// first thread reaching the getAndMumble reads x
if (r.getAndMumble() == x)
return proposed[ThreadID.get()];

else
return proposed[1 - ThreadID.get()];

}
}

Question
Why doesn’t this construction work for more than 2 threads?

Annette Bieniusa Replication and Consistency 35/ 45



Interfering RMW

Let F be a set of functions such that for all fi, fj ∈ F either

commute: fi(fj(v)) = fj(fi(v))
overwrite: fi(fj(v)) = fi(v)

Theorem
Any set of RMW objects with mumble function that commutes or
overwrites has consensus number exactly 2.

Annette Bieniusa Replication and Consistency 36/ 45



Proof sketch: Commuting functions

Annette Bieniusa Replication and Consistency 37/ 45



Proof sketch: Overwriting functions

Annette Bieniusa Replication and Consistency 38/ 45



Your turn!

Using the results so far, derive the consensus numbers for the
following objects!
Justify your answer!

1 Register with getAndIncrement operation
2 Register with getAndSet operation
3 Register with compareAndSwap operation

Annette Bieniusa Replication and Consistency 39/ 45



compareAndSet has Consensus Number ∞
Construct consensus protocol for any number of threads
Assumption here is that the AtomicInteger is not restricted as in
Java, but can represent any integral number

class RMWConsensus extends ConsensusProtocol {

private AtomicInteger r = new AtomicInteger(-1);

int decide(int value) {
propose(value);

// first thread executing compareAndSet puts its thread id r
r.compareAndSet(-1, ThreadID.get());
return proposed[r.get()];

}

}

Annette Bieniusa Replication and Consistency 40/ 45



Fun Fact: Every consensus number has an object!

Atomic k-assignment solves consensus for 2k-2 threads
Can be extended to odd numbers

Annette Bieniusa Replication and Consistency 41/ 45



Impact of these Results

Many early machines provided these “weak” RMW instructions
(i.e. with consensus number ≤ 2)

Test-and-set (IBM 360)
Fetch-and-add (NYU Ultracomputer)
Swap (Original SPARCs)

We now understand their limitations
But why do we want consensus anyway?

Annette Bieniusa Replication and Consistency 42/ 45



Theorem: Consensus is Universal!(Herlihy 1991)

From n-process consensus, we can construct a

wait-free/lock-free
linearizable
n-threaded implementation
of any sequentially specified object!

⇒ Next lecture!

Annette Bieniusa Replication and Consistency 43/ 45



Summary

Consensus problem as classical concurrent problem
Fundamental impossibility result by Fischer-Lynch-Paterson
(adapted by Maurice Herlihy)
Hierarchy of synchronization operations based on consensus
numbers

Annette Bieniusa Replication and Consistency 44/ 45



Further reading

Fischer, Michael J., Nancy A. Lynch, and Mike Paterson. 1985.
“Impossibility of Distributed Consensus with One Faulty Process.” J.
ACM 32 (2): 374–82. https://doi.org/10.1145/3149.214121.

Herlihy, Maurice. 1991. “Wait-Free Synchronization.” ACM Trans.
Program. Lang. Syst. 13 (1): 124–49.
https://doi.org/10.1145/114005.102808.

Annette Bieniusa Replication and Consistency 45/ 45

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/114005.102808

	Motivation
	The Consensus Problem

