
Replication and Consistency
08 Spin Locking and Contention

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Annette Bieniusa Replication and Consistency 1/ 76

Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency 2/ 76

Previously on Replication and Consistency

Models
Accurate (we never lied to you)
But idealized (we forgot to mention a few things)

Protocols
Elegant
Essential
But naive

Annette Bieniusa Replication and Consistency 3/ 76

New Focus: Performance in Real Systems

Models
More complicated (more details)
Still focus on principles (not soon to become obsolete)

Protocols
Elegant (in their fashion)
Important (why else would we discuss them)
And realistic (more optimizations will be possible, though)

Annette Bieniusa Replication and Consistency 4/ 76

Mutual Exclusion, revisited

Think of performance, not just correctness and progress
Begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware
And get to know a collection of locking algorithms

Annette Bieniusa Replication and Consistency 5/ 76

If a processor doesn’t get a lock . . .

Question
What can the processor do?

Keep trying
“spin” or “busy-wait” as with Filter and Bakery algorithm
Useful on multi-processors if expected delays are short

Suspend and allow scheduler to schedule other processes
“blocking’ ’ as with Java’s monitors
Good if delays are long
Always good on uniprocessors

In practise, often mix of both strategies
Spin for a short time
Then, suspend

Annette Bieniusa Replication and Consistency 6/ 76

If a processor doesn’t get a lock . . .

Question
What can the processor do?

Keep trying
“spin” or “busy-wait” as with Filter and Bakery algorithm
Useful on multi-processors if expected delays are short

Suspend and allow scheduler to schedule other processes
“blocking’ ’ as with Java’s monitors
Good if delays are long
Always good on uniprocessors

In practise, often mix of both strategies
Spin for a short time
Then, suspend

Annette Bieniusa Replication and Consistency 6/ 76

Basic Spin-Lock

Contention: Multiple threads try to acquire lock at the same time
Hoch can we avoid or alleviate contention?

Annette Bieniusa Replication and Consistency 7/ 76

Test-and-Set (TAS) revisited
Machine-instruction on one word (here: for boolean values)
Atomically, swap new value with prior value and return prior value
Swapping in true is called Test-And-Set
Aka getAndSet() in Java

\\ Package java.utitl.concurrent.atomic

public class AtomicBoolean {
boolean value;

// implemented as one hardware instruction
public synchronized boolean getAndSet(boolean newValue) {

boolean prior = value;
value = newValue;
return prior;

}
}

Annette Bieniusa Replication and Consistency 8/ 76

Task: Design a lock using Test-and-Set (TAS)!

class TASLock implements Lock{

// if false, lock is free
// if true, lock is taken
AtomicBoolean state = new AtomicBoolean(false);

void lock() {
// TODO

}

void unlock() {
// TODO

}
}

Annette Bieniusa Replication and Consistency 9/ 76

Test-and-Set Lock

class TASLock {

AtomicBoolean state = new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}
}

Annette Bieniusa Replication and Consistency 10/ 76

Space Complexity

TAS spin-lock has small “footprint”
N thread spin-lock uses O(1) space
As opposed to O(N) Peterson/Bakery

Question
How did we overcome the Ω(N) lower bound?

⇒ Use an object with higher consensus number!

Annette Bieniusa Replication and Consistency 11/ 76

Space Complexity

TAS spin-lock has small “footprint”
N thread spin-lock uses O(1) space
As opposed to O(N) Peterson/Bakery

Question
How did we overcome the Ω(N) lower bound?
⇒ Use an object with higher consensus number!

Annette Bieniusa Replication and Consistency 11/ 76

Performance Evaluation

Experiment
Spawn N threads
Increment shared counter 1 million times
Work is split between the threads, i.e. each thread does 106/N
increments
Each thread takes lock, increments a counter, releases lock

How long should it take?
How long does it take?

Annette Bieniusa Replication and Consistency 12/ 76

Hypothesis
No speedup because lock is sequential bottleneck (Amadahl’s
law!)

Annette Bieniusa Replication and Consistency 13/ 76

Mystery 1

A typical evaluation looks like this:

Annette Bieniusa Replication and Consistency 14/ 76

New approach: Test-and-Test-and-Set Locks

Lurking stage
Wait until lock seems to be free
Spin while read returns true (lock taken)

Pouncing state
As soon as lock seems to be available
Read returns false (lock free)
Call TAS to acquire lock
If TAS loses, back to lurking

Annette Bieniusa Replication and Consistency 15/ 76

Test-and-Test-and-Set Locks

class TTASLock extends TASLock{
void lock() {

while (true) {
while (state.get()) {} // Lurk
if (!state.getAndSet(true)) // Pounce

return;
}

}

Annette Bieniusa Replication and Consistency 16/ 76

Mystery 2

Both TAS and TTAS do the same thing in our model
But TTAS performs much better in actual evaluations
Neither approach is ideal

Our memory abstraction is broken! We need a more detailed model!

Annette Bieniusa Replication and Consistency 17/ 76

Mystery 2

Both TAS and TTAS do the same thing in our model
But TTAS performs much better in actual evaluations
Neither approach is ideal

Our memory abstraction is broken! We need a more detailed model!

Annette Bieniusa Replication and Consistency 17/ 76

Mystery 2

Both TAS and TTAS do the same thing in our model
But TTAS performs much better in actual evaluations
Neither approach is ideal

Our memory abstraction is broken! We need a more detailed model!

Annette Bieniusa Replication and Consistency 17/ 76

Bus-Based Architectures

Random Access Memory (access time: 10s of cycles)
Shared Bus as broadcast medium

One broadcaster at a time
Other processors and memory can passively listen

Per-Processor Caches (access time: 1-2 cycles)

Annette Bieniusa Replication and Consistency 18/ 76

Cache Coherence

We have lots of copies of data
Original copy in memory
Cached copies at processors

If some processor modifies its own copy:
What do we do with the others?
How to avoid confusion about actual value?

Cache coherence protocol!

Annette Bieniusa Replication and Consistency 19/ 76

Cache Coherence

We have lots of copies of data
Original copy in memory
Cached copies at processors

If some processor modifies its own copy:
What do we do with the others?
How to avoid confusion about actual value?

Cache coherence protocol!

Annette Bieniusa Replication and Consistency 19/ 76

Write-Back Caches

Idea: Accumulate changes in cache and write back when needed
Because we need cache for something else
Or because another processor wants to read the changed value

On first modification, invalidate all other entries
Cache entry can be marked as dirty (i.e. it must be eventually
written back to main memory)

Annette Bieniusa Replication and Consistency 20/ 76

When a thread modifies its cache value, . . .

Annette Bieniusa Replication and Consistency 21/ 76

. . . it invalidates all other caches

Annette Bieniusa Replication and Consistency 22/ 76

When another thread want to read, . . .

Annette Bieniusa Replication and Consistency 23/ 76

. . . the owner responds

Annette Bieniusa Replication and Consistency 24/ 76

Mystery Explained!

TAS-Lock
Spinning threads invalidate cache line with TAS, keeps bus busy
Threads wanting to release lock is delayed behind spinners

TTAS-Lock
Threads spin on local cache
No bus use while lock is taken
Problem: When lock is released, reads are satisfied sequentially on
bus
Eventually system quiesces after lock has been acquired

→ quiescence time linear in number of threads for bus architecture

Annette Bieniusa Replication and Consistency 25/ 76

Solution: Introduce Delay

“If the lock looks free, but I fail to get it, there must be lots of
contention!”

⇒ Better to back off than to collide again

Example: Exponential Backoff

If I fail to get lock

Wait random duration before retry
Each subsequent failure doubles expected wait (up to fixed
maximum)

Annette Bieniusa Replication and Consistency 26/ 76

Solution: Introduce Delay

“If the lock looks free, but I fail to get it, there must be lots of
contention!”

⇒ Better to back off than to collide again

Example: Exponential Backoff

If I fail to get lock

Wait random duration before retry
Each subsequent failure doubles expected wait (up to fixed
maximum)

Annette Bieniusa Replication and Consistency 26/ 76

Exponential Backoff Lock

class Backoff extends TTASLock {

void lock() {
int delay = MIN_DELAY;
while (true) {

while (state.get()) {}
if (!lock.getAndSet(true))

return;
// if not successful, we wait
sleep(random() % delay);
if (delay < MAX_DELAY)

delay = 2 * delay;
}

}
}

Annette Bieniusa Replication and Consistency 27/ 76

Exponential Backoff Lock

Easy to implement
But must choose parameters carefully
Not portable across platforms

Idea

Avoid useless invalidations by keeping a queue of threads
Each thread notifies next in line without bothering the others

Annette Bieniusa Replication and Consistency 28/ 76

Exponential Backoff Lock

Easy to implement
But must choose parameters carefully
Not portable across platforms

Idea

Avoid useless invalidations by keeping a queue of threads
Each thread notifies next in line without bothering the others

Annette Bieniusa Replication and Consistency 28/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 29/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 30/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 31/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 32/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 33/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 34/ 76

Anderson Queue Lock

Annette Bieniusa Replication and Consistency 35/ 76

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags = {true,false,...,false}; // one per thread
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot; // thread-local per thread

void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}; //spin
flags[mySlot % n] = false; // prepare for re-use (wrong in
Figure!)

}

void unlock() {
flags[(mySlot+1) % n] = true; // tell next thread

}
}

Annette Bieniusa Replication and Consistency 36/ 76

Anderson Lock

FIFO fairness, no lockout
Scalable performance

Threads spin on locally cached copy of single array location
But beware of false sharing of items on the same cache line!
Invalidations always per cache line
Trick: Use padding to avoid sharing

Not space-efficient
Requires knowledge about number of threads

Annette Bieniusa Replication and Consistency 37/ 76

CLH Lock (by Craig, Landin, Hagersten)

Annette Bieniusa Replication and Consistency 38/ 76

CLH Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 39/ 76

CLH Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 40/ 76

CLH Lock: It’s a Queue!

Annette Bieniusa Replication and Consistency 41/ 76

CLH Lock: Releasing a lock

Annette Bieniusa Replication and Consistency 42/ 76

CLH Lock: Releasing a lock

Annette Bieniusa Replication and Consistency 43/ 76

Remarks

Threads spin on cached copy (efficient)
Lock can reuse predecessor’s node for future lock accesses

Annette Bieniusa Replication and Consistency 44/ 76

CLH Lock
class Qnode {

AtomicBoolean locked = new AtomicBoolean(true);
}

class CLHLock implements Lock {

AtomicReference<Qnode> tail = new AtomicReference<Qnode>(null);
ThreadLocal<Qnode> myNode = new Qnode(); // per thread

void lock() {
qnolde.locked = true;
Qnode pred = tail.getAndSet(myNode); // swap my node into
queue
while (pred.locked) {} // spin

}

void unlock() {
myNode.locked = false;
myNode = pred; // "reuse" predecessor's qnode (see book)

}
}

Annette Bieniusa Replication and Consistency 45/ 76

CLH Lock

Lock release affects only successor
Does not depend on prior knowledge about number of threads
FIFO Fairness
But doesn’t work (efficiently) for uncached NUMA architectures

Annette Bieniusa Replication and Consistency 46/ 76

NUMA Architectures

N on-U niform-M emomory-A rchitecture
Model: Flat shared memory, no caches (in most variants)
Some memory regions faster accessible than others
Spinning on remote memory is slow

Annette Bieniusa Replication and Consistency 47/ 76

MCS Lock (by Mellor-Crummey and Scott)

FIFO order
Spin on local memory only
Small, constant-size overhead

Idea:

To acquire lock, place own Qnode at tail of list
If it has a predecessor, modify predecessor’s node to refer to own
Qnode

Annette Bieniusa Replication and Consistency 48/ 76

MCS Lock

Annette Bieniusa Replication and Consistency 49/ 76

MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 50/ 76

MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 51/ 76

MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 52/ 76

MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 53/ 76

MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 54/ 76

MCS Lock: Releasing a lock

Annette Bieniusa Replication and Consistency 55/ 76

MCS Lock

class Qnode {
boolean locked = false; // only reads/writes required
Qnode next = null;

}

Annette Bieniusa Replication and Consistency 56/ 76

MCS Lockclass MCSLock implements Lock {

AtomicReference tail;
ThreadLocal<Qnode> qnode = new Qnode();

void lock() {
// reset for reuse
qnode.next = null;
qnode.locked = false;

// swap my node in
Qnode pred = tail.getAndSet(qnode);

if (pred != null) {
// lock is taken, so set my status to wait
qnode.locked = true;
// tell predecessor where to find me
pred.next = qnode;
// spin on my node
while (qnode.locked) {}

}
} ...

Annette Bieniusa Replication and Consistency 57/ 76

MCS Lock: Releasing

Status of qnode.next indicates that other thread is active
Need to wait for it to finish and start spinning

Annette Bieniusa Replication and Consistency 58/ 76

MCS Lock: Releasing

Annette Bieniusa Replication and Consistency 59/ 76

MCS Lock: Releasing

Annette Bieniusa Replication and Consistency 60/ 76

MCS Lock

void unlock() {
if (qnode.next == null) {

// if really no thread waiting
if (tail.compareAndSet(qnode, null)
return;

// otherwise, wait for successor to finish
while (qnode.next == null) {}

}
// tell successor that it can start
qnode.next.locked = false;

}
}

Annette Bieniusa Replication and Consistency 61/ 76

Abortable Locks

What if you want to give up waiting for a lock?
For example: timeout, transaction aborted by user, . . .

Simple for Backoff-Lock
Just return from lock() call
No cleanup, wait-free, immediate

Problematic for Queue Locks
Can’t just quit
Thread in line behind will starve

Idea: Let successor deal with the problem!

⇒ Abortable CLH Lock

Annette Bieniusa Replication and Consistency 62/ 76

Abortable Locks

What if you want to give up waiting for a lock?
For example: timeout, transaction aborted by user, . . .

Simple for Backoff-Lock
Just return from lock() call
No cleanup, wait-free, immediate

Problematic for Queue Locks
Can’t just quit
Thread in line behind will starve

Idea: Let successor deal with the problem!

⇒ Abortable CLH Lock

Annette Bieniusa Replication and Consistency 62/ 76

Timeout Lock

Annette Bieniusa Replication and Consistency 63/ 76

Timeout Lock: Acquire

Annette Bieniusa Replication and Consistency 64/ 76

Timeout Lock: Acquire

Annette Bieniusa Replication and Consistency 65/ 76

Timeout Lock: Acquire

Annette Bieniusa Replication and Consistency 66/ 76

Timeout Lock: Acquire

Annette Bieniusa Replication and Consistency 67/ 76

Timeout Lock: Acquire

Annette Bieniusa Replication and Consistency 68/ 76

Timeout Lock: While waiting, . . .

Annette Bieniusa Replication and Consistency 69/ 76

Timeout Lock: Thread times out

Annette Bieniusa Replication and Consistency 70/ 76

Timeout Lock: Thread times out

Annette Bieniusa Replication and Consistency 71/ 76

Timeout Locks: Implementation
class TOLock {

static Qnode AVAILABLE = new Qnode(); // signifies free lock
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode; // per thread

// Return value indicates success
boolean lock(long timeout) {

// Initialize node
Qnode qnode = new Qnode();
myNode = qnode;
qnode.prev = null;

// swap with tail
Qnode myPred = tail.getAndSet(qnode);

// if predecessor absent or released, we are done
if (myPred == null || myPred.prev == AVAILABLE) {

return true;
}

...

Annette Bieniusa Replication and Consistency 72/ 76

Timeout Locks

...
// Keep trying for a while
long start = now();
while (now()- start < timeout) {

// Spin on predecessor's prev field
Qnode predPred = myPred.prev;
if (predPred == AVAILABLE) {
// predecessor released lock
return true;

} else if (predPred != null) {
// predecessor aborted, we advance in queue
myPred = predPred;

}
}

...

Annette Bieniusa Replication and Consistency 73/ 76

Timeout Locks

...
// In case timeout happened, we waited long enough
if (!tail.compareAndSet(qnode, myPred)){

// If CAS fails, tell successor about my predecessor
qnode.prev = myPred;

}
// If CAS succeeds, no successor, nothing to do
return false;

}

Annette Bieniusa Replication and Consistency 74/ 76

Timeout Locks

void unlock() {
Qnode qnode = myNode.get();
if (!tail.compareAndSet(qnode, null)) {

// If CAS failed: there is successor
// Notify successor that it can enter
qnode.prev = AVAILABLE;

}
// If CAS succeeds: no successor waiting
// Set tail to null, no clean up

}

Annette Bieniusa Replication and Consistency 75/ 76

Summary: One Lock To Rule Them All?

TTAS+Backoff, CLH, MCS, ToLock . . .
Each one better than others in some way
There is no one solution
Decision really depends on:

the application
the hardware
which properties are important

Annette Bieniusa Replication and Consistency 76/ 76

