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Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld
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Previously on Replication and Consistency

Models
Accurate (we never lied to you)
But idealized (we forgot to mention a few things)

Protocols
Elegant
Essential
But naive
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New Focus: Performance in Real Systems

Models
More complicated (more details)
Still focus on principles (not soon to become obsolete)

Protocols
Elegant (in their fashion)
Important (why else would we discuss them)
And realistic (more optimizations will be possible, though)
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Mutual Exclusion, revisited

Think of performance, not just correctness and progress
Begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware
And get to know a collection of locking algorithms
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If a processor doesn’t get a lock . . .

Question
What can the processor do?

Keep trying
“spin” or “busy-wait” as with Filter and Bakery algorithm
Useful on multi-processors if expected delays are short

Suspend and allow scheduler to schedule other processes
“blocking’ ’ as with Java’s monitors
Good if delays are long
Always good on uniprocessors

In practise, often mix of both strategies
Spin for a short time
Then, suspend
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Basic Spin-Lock

Contention: Multiple threads try to acquire lock at the same time
Hoch can we avoid or alleviate contention?
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Test-and-Set (TAS) revisited
Machine-instruction on one word (here: for boolean values)
Atomically, swap new value with prior value and return prior value
Swapping in true is called Test-And-Set
Aka getAndSet() in Java

\\ Package java.utitl.concurrent.atomic

public class AtomicBoolean {
boolean value;

// implemented as one hardware instruction
public synchronized boolean getAndSet(boolean newValue) {

boolean prior = value;
value = newValue;
return prior;

}
}
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Task: Design a lock using Test-and-Set (TAS)!

class TASLock implements Lock{

// if false, lock is free
// if true, lock is taken
AtomicBoolean state = new AtomicBoolean(false);

void lock() {
// TODO

}

void unlock() {
// TODO

}
}
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Test-and-Set Lock

class TASLock {

AtomicBoolean state = new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}
}
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Space Complexity

TAS spin-lock has small “footprint”
N thread spin-lock uses O(1) space
As opposed to O(N) Peterson/Bakery

Question
How did we overcome the Ω(N) lower bound?

⇒ Use an object with higher consensus number!
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Performance Evaluation

Experiment
Spawn N threads
Increment shared counter 1 million times
Work is split between the threads, i.e. each thread does 106/N
increments
Each thread takes lock, increments a counter, releases lock

How long should it take?
How long does it take?
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Hypothesis
No speedup because lock is sequential bottleneck (Amadahl’s
law!)
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Mystery 1

A typical evaluation looks like this:
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New approach: Test-and-Test-and-Set Locks

Lurking stage
Wait until lock seems to be free
Spin while read returns true (lock taken)

Pouncing state
As soon as lock seems to be available
Read returns false (lock free)
Call TAS to acquire lock
If TAS loses, back to lurking
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Test-and-Test-and-Set Locks

class TTASLock extends TASLock{
void lock() {

while (true) {
while (state.get()) {} // Lurk
if (!state.getAndSet(true)) // Pounce

return;
}

}
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Mystery 2

Both TAS and TTAS do the same thing in our model
But TTAS performs much better in actual evaluations
Neither approach is ideal

Our memory abstraction is broken! We need a more detailed model!
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Bus-Based Architectures

Random Access Memory (access time: 10s of cycles)
Shared Bus as broadcast medium

One broadcaster at a time
Other processors and memory can passively listen

Per-Processor Caches (access time: 1-2 cycles)
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Cache Coherence

We have lots of copies of data
Original copy in memory
Cached copies at processors

If some processor modifies its own copy:
What do we do with the others?
How to avoid confusion about actual value?

Cache coherence protocol!
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Write-Back Caches

Idea: Accumulate changes in cache and write back when needed
Because we need cache for something else
Or because another processor wants to read the changed value

On first modification, invalidate all other entries
Cache entry can be marked as dirty (i.e. it must be eventually
written back to main memory)
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When a thread modifies its cache value, . . .
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. . . it invalidates all other caches
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When another thread want to read, . . .

Annette Bieniusa Replication and Consistency 23/ 76



. . . the owner responds
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Mystery Explained!

TAS-Lock
Spinning threads invalidate cache line with TAS, keeps bus busy
Threads wanting to release lock is delayed behind spinners

TTAS-Lock
Threads spin on local cache
No bus use while lock is taken
Problem: When lock is released, reads are satisfied sequentially on
bus
Eventually system quiesces after lock has been acquired

→ quiescence time linear in number of threads for bus architecture
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Solution: Introduce Delay

“If the lock looks free, but I fail to get it, there must be lots of
contention!”

⇒ Better to back off than to collide again

Example: Exponential Backoff

If I fail to get lock

Wait random duration before retry
Each subsequent failure doubles expected wait (up to fixed
maximum)

Annette Bieniusa Replication and Consistency 26/ 76



Solution: Introduce Delay

“If the lock looks free, but I fail to get it, there must be lots of
contention!”

⇒ Better to back off than to collide again

Example: Exponential Backoff

If I fail to get lock

Wait random duration before retry
Each subsequent failure doubles expected wait (up to fixed
maximum)

Annette Bieniusa Replication and Consistency 26/ 76



Exponential Backoff Lock

class Backoff extends TTASLock {

void lock() {
int delay = MIN_DELAY;
while (true) {

while (state.get()) {}
if (!lock.getAndSet(true))

return;
// if not successful, we wait
sleep(random() % delay);
if (delay < MAX_DELAY)

delay = 2 * delay;
}

}
}
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Exponential Backoff Lock

Easy to implement
But must choose parameters carefully
Not portable across platforms

Idea

Avoid useless invalidations by keeping a queue of threads
Each thread notifies next in line without bothering the others
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Anderson Queue Lock
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Anderson Queue Lock

class ALock implements Lock {
boolean[] flags = {true,false,...,false}; // one per thread
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot; // thread-local per thread

void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}; //spin
flags[mySlot % n] = false; // prepare for re-use (wrong in
Figure!)

}

void unlock() {
flags[(mySlot+1) % n] = true; // tell next thread

}
}
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Anderson Lock

FIFO fairness, no lockout
Scalable performance

Threads spin on locally cached copy of single array location
But beware of false sharing of items on the same cache line!
Invalidations always per cache line
Trick: Use padding to avoid sharing

Not space-efficient
Requires knowledge about number of threads
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CLH Lock (by Craig, Landin, Hagersten)
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CLH Lock: Acquiring a lock
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CLH Lock: Acquiring a lock
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CLH Lock: It’s a Queue!
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CLH Lock: Releasing a lock
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CLH Lock: Releasing a lock

Annette Bieniusa Replication and Consistency 43/ 76



Remarks

Threads spin on cached copy (efficient)
Lock can reuse predecessor’s node for future lock accesses
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CLH Lock
class Qnode {

AtomicBoolean locked = new AtomicBoolean(true);
}

class CLHLock implements Lock {

AtomicReference<Qnode> tail = new AtomicReference<Qnode>(null);
ThreadLocal<Qnode> myNode = new Qnode(); // per thread

void lock() {
qnolde.locked = true;
Qnode pred = tail.getAndSet(myNode); // swap my node into
queue
while (pred.locked) {} // spin

}

void unlock() {
myNode.locked = false;
myNode = pred; // "reuse" predecessor's qnode (see book)

}
}
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CLH Lock

Lock release affects only successor
Does not depend on prior knowledge about number of threads
FIFO Fairness
But doesn’t work (efficiently) for uncached NUMA architectures
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NUMA Architectures

N on-U niform-M emomory-A rchitecture
Model: Flat shared memory, no caches (in most variants)
Some memory regions faster accessible than others
Spinning on remote memory is slow
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MCS Lock (by Mellor-Crummey and Scott)

FIFO order
Spin on local memory only
Small, constant-size overhead

Idea:

To acquire lock, place own Qnode at tail of list
If it has a predecessor, modify predecessor’s node to refer to own
Qnode
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MCS Lock
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MCS Lock: Acquiring a lock
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MCS Lock: Acquiring a lock

Annette Bieniusa Replication and Consistency 54/ 76



MCS Lock: Releasing a lock
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MCS Lock

class Qnode {
boolean locked = false; // only reads/writes required
Qnode next = null;

}
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MCS Lockclass MCSLock implements Lock {

AtomicReference tail;
ThreadLocal<Qnode> qnode = new Qnode();

void lock() {
// reset for reuse
qnode.next = null;
qnode.locked = false;

// swap my node in
Qnode pred = tail.getAndSet(qnode);

if (pred != null) {
// lock is taken, so set my status to wait
qnode.locked = true;
// tell predecessor where to find me
pred.next = qnode;
// spin on my node
while (qnode.locked) {}

}
} ...
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MCS Lock: Releasing

Status of qnode.next indicates that other thread is active
Need to wait for it to finish and start spinning
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MCS Lock: Releasing
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MCS Lock: Releasing
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MCS Lock

void unlock() {
if (qnode.next == null) {

// if really no thread waiting
if (tail.compareAndSet(qnode, null)
return;

// otherwise, wait for successor to finish
while (qnode.next == null) {}

}
// tell successor that it can start
qnode.next.locked = false;

}
}
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Abortable Locks

What if you want to give up waiting for a lock?
For example: timeout, transaction aborted by user, . . .

Simple for Backoff-Lock
Just return from lock() call
No cleanup, wait-free, immediate

Problematic for Queue Locks
Can’t just quit
Thread in line behind will starve

Idea: Let successor deal with the problem!

⇒ Abortable CLH Lock
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Timeout Lock
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Timeout Lock: Acquire
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Timeout Lock: Acquire
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Timeout Lock: Acquire
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Timeout Lock: Acquire
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Timeout Lock: While waiting, . . .
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Timeout Lock: Thread times out
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Timeout Lock: Thread times out
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Timeout Locks: Implementation
class TOLock {

static Qnode AVAILABLE = new Qnode(); // signifies free lock
AtomicReference<Qnode> tail;
ThreadLocal<Qnode> myNode; // per thread

// Return value indicates success
boolean lock(long timeout) {

// Initialize node
Qnode qnode = new Qnode();
myNode = qnode;
qnode.prev = null;

// swap with tail
Qnode myPred = tail.getAndSet(qnode);

// if predecessor absent or released, we are done
if (myPred == null || myPred.prev == AVAILABLE) {

return true;
}

...
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Timeout Locks

...
// Keep trying for a while
long start = now();
while (now()- start < timeout) {

// Spin on predecessor's prev field
Qnode predPred = myPred.prev;
if (predPred == AVAILABLE) {
// predecessor released lock
return true;

} else if (predPred != null) {
// predecessor aborted, we advance in queue
myPred = predPred;

}
}

...
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Timeout Locks

...
// In case timeout happened, we waited long enough
if (!tail.compareAndSet(qnode, myPred)){

// If CAS fails, tell successor about my predecessor
qnode.prev = myPred;

}
// If CAS succeeds, no successor, nothing to do
return false;

}
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Timeout Locks

void unlock() {
Qnode qnode = myNode.get();
if (!tail.compareAndSet(qnode, null)) {

// If CAS failed: there is successor
// Notify successor that it can enter
qnode.prev = AVAILABLE;

}
// If CAS succeeds: no successor waiting
// Set tail to null, no clean up

}
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Summary: One Lock To Rule Them All?

TTAS+Backoff, CLH, MCS, ToLock . . .
Each one better than others in some way
There is no one solution
Decision really depends on:

the application
the hardware
which properties are important
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