
Replication and Consistency
09 Concurrent Linked Lists

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Annette Bieniusa Replication and Consistency 1/ 76



Last lecture: Spin locks

Annette Bieniusa Replication and Consistency 2/ 76



Today: Concurrent Objects

Goal 1: Adding threads should not lower throughput
Contention effects
Mostly fixed by Queue locks

Goal 2: Adding threads should increase throughput
Not possible if inherently sequential
Surprising things are parallelizable

Introduce four “patterns” for highly-concurrent objects
Bag of tricks and ideas that work more than once

Annette Bieniusa Replication and Consistency 3/ 76



Today: Concurrent Objects

Goal 1: Adding threads should not lower throughput
Contention effects
Mostly fixed by Queue locks

Goal 2: Adding threads should increase throughput
Not possible if inherently sequential
Surprising things are parallelizable

Introduce four “patterns” for highly-concurrent objects
Bag of tricks and ideas that work more than once

Annette Bieniusa Replication and Consistency 3/ 76



Pattern 1: Fine-grained synchronization

Instead of using a single lock, split object into
independently-synchronized components

E.g. nodes in a list or tree
Methods conflict when they access

the same component
at the same time

Annette Bieniusa Replication and Consistency 4/ 76



Pattern 2: Optimistic synchronization

Search optimistically without locking . . .
If you find it, lock and check

OK: we are done
Oops: start over

Usually cheaper than locking
But mistakes are expensive

Annette Bieniusa Replication and Consistency 5/ 76



Pattern 3: Lazy synchronization

Postpone hard work
In particular, removing components can be tricky
Instead:

1 Logical removal
Mark component to be deleted

2 Physical removal
Do what actually needs to be done

Annette Bieniusa Replication and Consistency 6/ 76



Pattern 4: Lock-free synchronization

Don’t use locks at all
Use compareAndSet() and its relatives
Advantage:

No scheduler assumptions/support required
Disadvantages:

Complex
Sometimes high overhead

Annette Bieniusa Replication and Consistency 7/ 76



Set ADT (Abstract Data Type)
Practical example to illustrate these patterns
Unordered collection of items
No duplicates
List-based implementation with sentinel nodes for head and tail

Methods
add(x): put x in set (returns false if x already in the set)
remove(x): take x out of set (returns false if x not in the set)
contains(x): tests if x in set

Annette Bieniusa Replication and Consistency 8/ 76



Set Interface

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);
}

Annette Bieniusa Replication and Consistency 9/ 76



Reasoning about Concurrent Objects

Invariants: Properties that “always” holds
Established because

True when object is created
Truth preserved by each method

i.e. At each step of each method
Most steps are trivial

Usually one step is tricky
Often linearization point

Annette Bieniusa Replication and Consistency 10/ 76



Interference

Invariants make sense only if methods considered are the only
modifiers
Language encapsulation helps

Here: List nodes not visible outside List class
Freedom from interference needed even for removed nodes

Some algorithms traverse removed nodes
Careful with malloc() & free()!
Some of the solutions here do not work with automatic
garbage-collection

Annette Bieniusa Replication and Consistency 11/ 76



Representation Invariants
Abstraction map gives meaning to a concrete representation

Here: Item is in the list if corresponding node is reachable from
head

Representation invariants haracterize legal concrete
representations of abstract data type

Preserved by methods
Relied on by methods

Contract between methods

Suppose
add() leaves behind two copies of x

remove() removes only 1
Which one is incorrect?

If invariant says no duplicates, add() is incorrect
Otherwise, remove() is incorrect

Annette Bieniusa Replication and Consistency 12/ 76



Representation Invariants
Abstraction map gives meaning to a concrete representation

Here: Item is in the list if corresponding node is reachable from
head

Representation invariants haracterize legal concrete
representations of abstract data type

Preserved by methods
Relied on by methods

Contract between methods

Suppose
add() leaves behind two copies of x

remove() removes only 1
Which one is incorrect?

If invariant says no duplicates, add() is incorrect
Otherwise, remove() is incorrect

Annette Bieniusa Replication and Consistency 12/ 76



What are Representation Invariants for our linked-list Set?

1 Sorted
2 No duplicates
3 Sentinel nodes → tail reachable from head

Annette Bieniusa Replication and Consistency 13/ 76



What are Representation Invariants for our linked-list Set?

1 Sorted
2 No duplicates
3 Sentinel nodes → tail reachable from head

Annette Bieniusa Replication and Consistency 13/ 76



Safety and Liveness

Safety property: Linearizability
Linearization point is atomic step (read, write, CAS, . . . ) where
method “takes effect”

We will discuss different liveness properties
From Deadlock-free
To Wait-free

Annette Bieniusa Replication and Consistency 14/ 76



Sequential List-based Set

Annette Bieniusa Replication and Consistency 15/ 76



Coarse-Grained Locking
Simple and clearly correct

[What is the linearization point for each method?]
Deserves respect!

Works poorly under contention
Queue locks help

But bottleneck still an issue

Annette Bieniusa Replication and Consistency 16/ 76



Pattern 1: Fine-Grained Locking

Requires careful thought
“Do not meddle in the affairs of wizards, for they are subtle and
quick to anger” (J.R.R. Tolkien)

Idea:

Split object into pieces
Each piece has own lock
Methods that work on disjoint pieces need not exclude each other

Annette Bieniusa Replication and Consistency 17/ 76



Hand-over-Hand Locking

Annette Bieniusa Replication and Consistency 18/ 76



Hand-over-Hand Locking

Annette Bieniusa Replication and Consistency 19/ 76



Hand-over-Hand Locking

Annette Bieniusa Replication and Consistency 20/ 76



Hand-over-Hand Locking

Annette Bieniusa Replication and Consistency 21/ 76



Hand-over-Hand Locking: Removing node

Annette Bieniusa Replication and Consistency 22/ 76



Hand-over-Hand Locking: Removing node

But why do we need to always hold two locks?

Annette Bieniusa Replication and Consistency 23/ 76



Hand-over-Hand Locking: Removing node

But why do we need to always hold two locks?

Annette Bieniusa Replication and Consistency 23/ 76



Hand-over-Hand Locking: Concurrent Remove

Annette Bieniusa Replication and Consistency 24/ 76



Hand-over-Hand Locking: Concurrent Remove

Annette Bieniusa Replication and Consistency 25/ 76



Remarks

To delete node c, swing node b’s next field to d

Problem: Someone deleting b concurrently could direct a pointer
to c

If a node is locked, no one can delete node’s successor
If a thread locks node to be deleted and its predecessor, then it
works

Annette Bieniusa Replication and Consistency 26/ 76



Implementation: Node

class Node {
T item;
int key; // used for ordering, typically hash
Node next;

}

Annette Bieniusa Replication and Consistency 27/ 76



Implementation: Remove

public boolean remove(T item) {
int key = item.hashCode();
Node pred, curr;
try {

... // next slide
} finally { // never forget to unlock in the end!

curr.unlock();
pred.unlock();

}
}

Annette Bieniusa Replication and Consistency 28/ 76



Implementation: Remove

try {
// get and lock predecessor
// initially: pred = head
pred = this.head;
pred.lock();
// get and lock current
curr = pred.next;
curr.lock();
...

} finally { ... }

Annette Bieniusa Replication and Consistency 29/ 76



Implementation: Remove
// traverse list and search for element to remove
// at start of each loop, curr and pred are locked
while (curr.key <= key) { // search range

if (item == curr.item) {
// item found -> remove node
pred.next = curr.next;
return true;

}
pred.unlock();
// only one node locked!
pred = curr;
curr = curr.next;
curr.lock();
// lock invariant again restored

}
// item not found
return false;

Annette Bieniusa Replication and Consistency 30/ 76



Adding an item

To add a node
we must lock predecessor
we must lock successor

Then, neither can be deleted

Annette Bieniusa Replication and Consistency 31/ 76



Analysis

Deadlock-free (why?)
Starvation-free if locks are starvation-free (why?)
Better than coarse-grained lock

Threads can traverse in parallel
Still not ideal

Long chain of acquire/release
Inefficient

Annette Bieniusa Replication and Consistency 32/ 76



Pattern 2: Optimistic synchronization

Find nodes without locking
Lock nodes
Check that everything is ok

Annette Bieniusa Replication and Consistency 33/ 76



Optimistic: Traverse without locking

Annette Bieniusa Replication and Consistency 34/ 76



Optimistic: Lock and load

Annette Bieniusa Replication and Consistency 35/ 76



What can go wrong?

Annette Bieniusa Replication and Consistency 36/ 76



What can go wrong?

Annette Bieniusa Replication and Consistency 36/ 76



Trick 1: Validate that predecessor is still reachable

Annette Bieniusa Replication and Consistency 37/ 76



What else can go wrong?

Annette Bieniusa Replication and Consistency 38/ 76



What else can go wrong?

Annette Bieniusa Replication and Consistency 39/ 76



Trick 2: Validate that insertion point is still ok

Annette Bieniusa Replication and Consistency 40/ 76



Is this correct?

Remember our invariants!

Careful: We may traverse deleted nodes
next is not modified even for unlinked nodes
Further traversing leads back to list
Be careful with malloc() / free() here!

Establish properties by
validation
after we lock target nodes

Annette Bieniusa Replication and Consistency 41/ 76



Correctness of Remove (Part 1)

If

Nodes b and c both locked
Node b still reachable from head

Node c still successor to b

Then

Neither b nor d will be deleted by other thread
OK to delete c and return true

Annette Bieniusa Replication and Consistency 42/ 76



Unsuccessful remove

Annette Bieniusa Replication and Consistency 43/ 76



Correctness of Remove (Part 2)

If

Nodes b and d both locked
Node b still reachable from head

Node d still successor to b

Then

Neither will be deleted
No thread can add c after b

OK to return false

Annette Bieniusa Replication and Consistency 44/ 76



Validation

private boolean validate(Node pred, Node curr) {
Node node = head;
// search range
while (node.key <= pred.key) {

// predecessor reached from head
if (node == pred)
// insertion point still valid?
return pred.next == curr;

node = node.next;
}
return false;

}

Annette Bieniusa Replication and Consistency 45/ 76



Removing - Part 1

public boolean remove(Item item) {
int key = item.hashCode(); // search key
retry: while (true) {

// iterate over items
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {

if (item == curr.item)
break; // stop if item found

pred = curr;
curr = curr.next;

} ...

Annette Bieniusa Replication and Consistency 46/ 76



On Exit from Loop

If item is present:

curr holds item

pred just before curr

If item is absent:

curr has first higher key
pred just before curr

[Assuming no synchronization problems]

Annette Bieniusa Replication and Consistency 47/ 76



Removing - Part 2
try {
pred.lock();
curr.lock();
if (validate(pred, curr) {

// successful validation
if (curr.item == item) {
// item found
pred.next = curr.next;
return true;

} else {
// item not found
return false;

}
}

} finally { // always unlock!
pred.unlock();
curr.unlock();

}}}

Annette Bieniusa Replication and Consistency 48/ 76



Optimistic Lock

Limited number of hot-spots where threads fiddle with locks
Targets of add(), remove(), contains()

No contention on traversals
Traversals are wait-free, but threads might starve (why?)

Food for thought. . .

Annette Bieniusa Replication and Consistency 49/ 76



So far, so good

Much less lock acquisition/release
Good for performance
Good for concurrency

Problems
Need to traverse list twice
Optimistic is effective if cost of scanning twice without locks is less
than cost of scanning once with locks
contains() method acquires locks (90% of calls in many apps)

Annette Bieniusa Replication and Consistency 50/ 76



Pattern 4: Lazy Synchronization

Like optimistic, except
scan once for each method
contains(x) never locks . . .

Key insight
Removing nodes causes trouble
So, do it “lazily”

E.g. in method remove():
Scans list (as before)
Locks predecessor & current (as before)
Logical delete: Marks current node as removed (new!)
Physical delete: Redirects predecessor’s next (as before)

Annette Bieniusa Replication and Consistency 51/ 76



Lazy List

Annette Bieniusa Replication and Consistency 52/ 76



Remarks

Different abstraction map

An item is in the set iff it is referred to by an unmarked reachable
node

Different representation invariant
Every unmarked node is reachable

All methods scan through locked and marked nodes
Removing a node doesn’t slow down other method calls
Must still lock pred and curr nodes

Annette Bieniusa Replication and Consistency 53/ 76



Remarks

Different abstraction map
An item is in the set iff it is referred to by an unmarked reachable
node

Different representation invariant
Every unmarked node is reachable

All methods scan through locked and marked nodes
Removing a node doesn’t slow down other method calls
Must still lock pred and curr nodes

Annette Bieniusa Replication and Consistency 53/ 76



Validation
No need to rescan list!
Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

private boolean validate(Node pred, Node curr) {
return !pred.marked &&

!curr.marked &&
pred.next == curr);

}

Annette Bieniusa Replication and Consistency 54/ 76



Remove
//as before
...
try {
pred.lock(); curr.lock();
if (validate(pred,curr) {

if (curr.key == key) {
curr.marked = true; // logical remove
pred.next = curr.next; // physical remove
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}}}

Annette Bieniusa Replication and Consistency 55/ 76



Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next;
}
return curr.key == key && !curr.marked;

}

Annette Bieniusa Replication and Consistency 56/ 76



Analysis

Good
contains() doesn’t lock
In fact, its wait-free!
Good because typically high percentage of contains()
Uncontended calls don’t re-traverse

Bad
Contended add() and remove() calls do re-traverse
Traffic jam if one thread delays

Annette Bieniusa Replication and Consistency 57/ 76



“Traffic jam”

Any concurrent data structure based on mutual exclusion has a
weakness

If one thread enters critical section
And “eats the big muffin” (e.g. cache miss, page fault, descheduled
. . . )
Everyone else using that lock is stuck!

Need to trust the scheduler . . .
Lock-free data structures

Guarantees minimal progress in any execution
i.e. some thread will always complete a method call
Even if others halt at malicious times
Implies that implementation can’t use locks

Annette Bieniusa Replication and Consistency 58/ 76



Pattern 4: Lock-free Synchronization

Eliminate locking entirely
contains() wait-free and add() and remove() lock-free
Use only compareAndSet()

Annette Bieniusa Replication and Consistency 59/ 76



What could go wrong?

Annette Bieniusa Replication and Consistency 60/ 76



Problem

Annette Bieniusa Replication and Consistency 61/ 76



Solution: Combine Bit and Pointer

Ensure that node’s fields cannot be updated after node has been
logically or physically removed from the list
Treat next and marked field as atomic unit

Annette Bieniusa Replication and Consistency 62/ 76



Use AtomicMarkableReference

In C/C++: Embed flag in pointer
In Java: Class in java.util.concurrent.atomic package
Atomically swing reference and update flag
Remove in two steps

Set mark bit in next field
Redirect predecessor’s pointer

Annette Bieniusa Replication and Consistency 63/ 76



AtomicMarkableReference class

// returns reference + mark at array index 0
public Object get(boolean[] marked);
// returns mark
public boolean isMarked();
// double CAS
public boolean compareAndSet(

Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark);

// update mark if ref as expected
public boolean attemptMark(

Object expectedRef, boolean updateMark);

Annette Bieniusa Replication and Consistency 64/ 76



Remove

Annette Bieniusa Replication and Consistency 65/ 76



Remove

Annette Bieniusa Replication and Consistency 66/ 76



Remove

Annette Bieniusa Replication and Consistency 67/ 76



Traversing the list

What do you do when you find a “logically” deleted node in your
path?
Finish the job!

CAS the predecessor’s next field
Proceed (repeat as needed)

If threads don’t clean up while traversing, they may be forced to
re-traverse the list to remove previous marked nodes

Annette Bieniusa Replication and Consistency 68/ 76



Lock-free Traversal (only add() + remove())

Annette Bieniusa Replication and Consistency 69/ 76



Lock-free Traversal (only add() + remove())

Annette Bieniusa Replication and Consistency 70/ 76



Lock-free Traversal (only add() + remove())

Annette Bieniusa Replication and Consistency 71/ 76



Performance

Benchmark for throughput of Java List-based Set
16-node shared memory machine
Different algorithms
Vary percentage of contains() method calls

Annette Bieniusa Replication and Consistency 72/ 76



High contains ratio

Annette Bieniusa Replication and Consistency 73/ 76



Low contains ratio

Annette Bieniusa Replication and Consistency 74/ 76



Increasing contains ratio

Annette Bieniusa Replication and Consistency 75/ 76



Summary: “To lock or not to lock”

Locking vs. Non-blocking: Extremist views on both sides
The answer: nobler to compromise, combine locking and
non-blocking
Example: Lazy list combines blocking add() and remove() and a
wait-free contains()

Remember: Blocking/non-blocking is a property of a method

Annette Bieniusa Replication and Consistency 76/ 76


