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Last lecture: Spin locks
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Today: Concurrent Objects

Goal 1: Adding threads should not lower throughput
Contention effects
Mostly fixed by Queue locks

Goal 2: Adding threads should increase throughput
Not possible if inherently sequential
Surprising things are parallelizable

Introduce four “patterns” for highly-concurrent objects
Bag of tricks and ideas that work more than once
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Pattern 1: Fine-grained synchronization

Instead of using a single lock, split object into
independently-synchronized components

E.g. nodes in a list or tree
Methods conflict when they access

the same component
at the same time
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Pattern 2: Optimistic synchronization

Search optimistically without locking . . .
If you find it, lock and check

OK: we are done
Oops: start over

Usually cheaper than locking
But mistakes are expensive
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Pattern 3: Lazy synchronization

Postpone hard work
In particular, removing components can be tricky
Instead:

1 Logical removal
Mark component to be deleted

2 Physical removal
Do what actually needs to be done
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Pattern 4: Lock-free synchronization

Don’t use locks at all
Use compareAndSet() and its relatives
Advantage:

No scheduler assumptions/support required
Disadvantages:

Complex
Sometimes high overhead
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Set ADT (Abstract Data Type)
Practical example to illustrate these patterns
Unordered collection of items
No duplicates
List-based implementation with sentinel nodes for head and tail

Methods
add(x): put x in set (returns false if x already in the set)
remove(x): take x out of set (returns false if x not in the set)
contains(x): tests if x in set
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Set Interface

public interface Set<T> {

public boolean add(T x);

public boolean remove(T x);

public boolean contains(T x);
}
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Reasoning about Concurrent Objects

Invariants: Properties that “always” holds
Established because

True when object is created
Truth preserved by each method

i.e. At each step of each method
Most steps are trivial

Usually one step is tricky
Often linearization point
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Interference

Invariants make sense only if methods considered are the only
modifiers
Language encapsulation helps

Here: List nodes not visible outside List class
Freedom from interference needed even for removed nodes

Some algorithms traverse removed nodes
Careful with malloc() & free()!
Some of the solutions here do not work with automatic
garbage-collection
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Representation Invariants
Abstraction map gives meaning to a concrete representation

Here: Item is in the list if corresponding node is reachable from
head

Representation invariants haracterize legal concrete
representations of abstract data type

Preserved by methods
Relied on by methods

Contract between methods

Suppose
add() leaves behind two copies of x

remove() removes only 1
Which one is incorrect?

If invariant says no duplicates, add() is incorrect
Otherwise, remove() is incorrect
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What are Representation Invariants for our linked-list Set?

1 Sorted
2 No duplicates
3 Sentinel nodes → tail reachable from head

Annette Bieniusa Replication and Consistency 13/ 76



What are Representation Invariants for our linked-list Set?

1 Sorted
2 No duplicates
3 Sentinel nodes → tail reachable from head

Annette Bieniusa Replication and Consistency 13/ 76



Safety and Liveness

Safety property: Linearizability
Linearization point is atomic step (read, write, CAS, . . . ) where
method “takes effect”

We will discuss different liveness properties
From Deadlock-free
To Wait-free
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Sequential List-based Set
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Coarse-Grained Locking
Simple and clearly correct

[What is the linearization point for each method?]
Deserves respect!

Works poorly under contention
Queue locks help

But bottleneck still an issue
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Pattern 1: Fine-Grained Locking

Requires careful thought
“Do not meddle in the affairs of wizards, for they are subtle and
quick to anger” (J.R.R. Tolkien)

Idea:

Split object into pieces
Each piece has own lock
Methods that work on disjoint pieces need not exclude each other
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Hand-over-Hand Locking
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Hand-over-Hand Locking
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Hand-over-Hand Locking
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Hand-over-Hand Locking
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Hand-over-Hand Locking: Removing node
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Hand-over-Hand Locking: Removing node

But why do we need to always hold two locks?
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Hand-over-Hand Locking: Concurrent Remove
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Hand-over-Hand Locking: Concurrent Remove
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Remarks

To delete node c, swing node b’s next field to d

Problem: Someone deleting b concurrently could direct a pointer
to c

If a node is locked, no one can delete node’s successor
If a thread locks node to be deleted and its predecessor, then it
works
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Implementation: Node

class Node {
T item;
int key; // used for ordering, typically hash
Node next;

}
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Implementation: Remove

public boolean remove(T item) {
int key = item.hashCode();
Node pred, curr;
try {

... // next slide
} finally { // never forget to unlock in the end!

curr.unlock();
pred.unlock();

}
}
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Implementation: Remove

try {
// get and lock predecessor
// initially: pred = head
pred = this.head;
pred.lock();
// get and lock current
curr = pred.next;
curr.lock();
...

} finally { ... }
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Implementation: Remove
// traverse list and search for element to remove
// at start of each loop, curr and pred are locked
while (curr.key <= key) { // search range

if (item == curr.item) {
// item found -> remove node
pred.next = curr.next;
return true;

}
pred.unlock();
// only one node locked!
pred = curr;
curr = curr.next;
curr.lock();
// lock invariant again restored

}
// item not found
return false;
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Adding an item

To add a node
we must lock predecessor
we must lock successor

Then, neither can be deleted
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Analysis

Deadlock-free (why?)
Starvation-free if locks are starvation-free (why?)
Better than coarse-grained lock

Threads can traverse in parallel
Still not ideal

Long chain of acquire/release
Inefficient
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Pattern 2: Optimistic synchronization

Find nodes without locking
Lock nodes
Check that everything is ok
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Optimistic: Traverse without locking
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Optimistic: Lock and load
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What can go wrong?
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What can go wrong?
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Trick 1: Validate that predecessor is still reachable
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What else can go wrong?
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What else can go wrong?
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Trick 2: Validate that insertion point is still ok
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Is this correct?

Remember our invariants!

Careful: We may traverse deleted nodes
next is not modified even for unlinked nodes
Further traversing leads back to list
Be careful with malloc() / free() here!

Establish properties by
validation
after we lock target nodes
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Correctness of Remove (Part 1)

If

Nodes b and c both locked
Node b still reachable from head

Node c still successor to b

Then

Neither b nor d will be deleted by other thread
OK to delete c and return true
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Unsuccessful remove
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Correctness of Remove (Part 2)

If

Nodes b and d both locked
Node b still reachable from head

Node d still successor to b

Then

Neither will be deleted
No thread can add c after b

OK to return false
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Validation

private boolean validate(Node pred, Node curr) {
Node node = head;
// search range
while (node.key <= pred.key) {

// predecessor reached from head
if (node == pred)
// insertion point still valid?
return pred.next == curr;

node = node.next;
}
return false;

}
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Removing - Part 1

public boolean remove(Item item) {
int key = item.hashCode(); // search key
retry: while (true) {

// iterate over items
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {

if (item == curr.item)
break; // stop if item found

pred = curr;
curr = curr.next;

} ...
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On Exit from Loop

If item is present:

curr holds item

pred just before curr

If item is absent:

curr has first higher key
pred just before curr

[Assuming no synchronization problems]
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Removing - Part 2
try {
pred.lock();
curr.lock();
if (validate(pred, curr) {

// successful validation
if (curr.item == item) {
// item found
pred.next = curr.next;
return true;

} else {
// item not found
return false;

}
}

} finally { // always unlock!
pred.unlock();
curr.unlock();

}}}
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Optimistic Lock

Limited number of hot-spots where threads fiddle with locks
Targets of add(), remove(), contains()

No contention on traversals
Traversals are wait-free, but threads might starve (why?)

Food for thought. . .
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So far, so good

Much less lock acquisition/release
Good for performance
Good for concurrency

Problems
Need to traverse list twice
Optimistic is effective if cost of scanning twice without locks is less
than cost of scanning once with locks
contains() method acquires locks (90% of calls in many apps)
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Pattern 4: Lazy Synchronization

Like optimistic, except
scan once for each method
contains(x) never locks . . .

Key insight
Removing nodes causes trouble
So, do it “lazily”

E.g. in method remove():
Scans list (as before)
Locks predecessor & current (as before)
Logical delete: Marks current node as removed (new!)
Physical delete: Redirects predecessor’s next (as before)
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Lazy List
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Remarks

Different abstraction map

An item is in the set iff it is referred to by an unmarked reachable
node

Different representation invariant
Every unmarked node is reachable

All methods scan through locked and marked nodes
Removing a node doesn’t slow down other method calls
Must still lock pred and curr nodes
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Validation
No need to rescan list!
Check that pred is not marked
Check that curr is not marked
Check that pred points to curr

private boolean validate(Node pred, Node curr) {
return !pred.marked &&

!curr.marked &&
pred.next == curr);

}
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Remove
//as before
...
try {
pred.lock(); curr.lock();
if (validate(pred,curr) {

if (curr.key == key) {
curr.marked = true; // logical remove
pred.next = curr.next; // physical remove
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}}}
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Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next;
}
return curr.key == key && !curr.marked;

}
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Analysis

Good
contains() doesn’t lock
In fact, its wait-free!
Good because typically high percentage of contains()
Uncontended calls don’t re-traverse

Bad
Contended add() and remove() calls do re-traverse
Traffic jam if one thread delays
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“Traffic jam”

Any concurrent data structure based on mutual exclusion has a
weakness

If one thread enters critical section
And “eats the big muffin” (e.g. cache miss, page fault, descheduled
. . . )
Everyone else using that lock is stuck!

Need to trust the scheduler . . .
Lock-free data structures

Guarantees minimal progress in any execution
i.e. some thread will always complete a method call
Even if others halt at malicious times
Implies that implementation can’t use locks
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Pattern 4: Lock-free Synchronization

Eliminate locking entirely
contains() wait-free and add() and remove() lock-free
Use only compareAndSet()
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What could go wrong?
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Problem
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Solution: Combine Bit and Pointer

Ensure that node’s fields cannot be updated after node has been
logically or physically removed from the list
Treat next and marked field as atomic unit
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Use AtomicMarkableReference

In C/C++: Embed flag in pointer
In Java: Class in java.util.concurrent.atomic package
Atomically swing reference and update flag
Remove in two steps

Set mark bit in next field
Redirect predecessor’s pointer

Annette Bieniusa Replication and Consistency 63/ 76



AtomicMarkableReference class

// returns reference + mark at array index 0
public Object get(boolean[] marked);
// returns mark
public boolean isMarked();
// double CAS
public boolean compareAndSet(

Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark);

// update mark if ref as expected
public boolean attemptMark(

Object expectedRef, boolean updateMark);
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Remove
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Remove

Annette Bieniusa Replication and Consistency 66/ 76



Remove
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Traversing the list

What do you do when you find a “logically” deleted node in your
path?
Finish the job!

CAS the predecessor’s next field
Proceed (repeat as needed)

If threads don’t clean up while traversing, they may be forced to
re-traverse the list to remove previous marked nodes
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Lock-free Traversal (only add() + remove())
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Lock-free Traversal (only add() + remove())
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Lock-free Traversal (only add() + remove())
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Performance

Benchmark for throughput of Java List-based Set
16-node shared memory machine
Different algorithms
Vary percentage of contains() method calls
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High contains ratio
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Low contains ratio
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Increasing contains ratio

Annette Bieniusa Replication and Consistency 75/ 76



Summary: “To lock or not to lock”

Locking vs. Non-blocking: Extremist views on both sides
The answer: nobler to compromise, combine locking and
non-blocking
Example: Lazy list combines blocking add() and remove() and a
wait-free contains()

Remember: Blocking/non-blocking is a property of a method
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