
1
Probeklausur KdP

WS 2025/26

Aufgabe 1 Statische Semantik (__ /20 Punkte)

Bei allen Zahlen, die in den Ausdrücken in dieser Aufgabe vorkommen, handelt es sich um Konstanten vom Typ Nat.

a) Geben Sie jeweils an, welchen Typ die folgenden Ausdrücke haben (ohne Beweisbaum).

__ /61. let x = 3 in let y = x + 5 in y % x

Nat

2. let f (x: Nat) = x > 7 in f 3

Bool

3. (fun (x: Nat) -> (fun (y: Nat) -> x + y)) 2

Nat -> Nat

b) Setzen Sie in die Lücken jeweils einen Teilausdruck ein, sodass sich insgesamt ein typkorrekter Ausdruck ergibt.

__ /71. fun (a: Bool) -> if a then 4711 else

Teilausdruck vom Typ Nat, z.B. 815.

2. match with | [] -> true | x -> false

Liste eines beliebigen Typs, z.B. [], [2], [2;4;6], [false].

3. let x = in 5 + fst x + snd x

Teilausdruck vom Typ Nat * Nat, z.B. (1, 2).

4. type Rectangle = {height: Nat; width: Nat; filled: Bool}

let r = in r.filled

Teilausdruck vom Typ Rectangle, z.B. {height=1; width=2; filled=true}.

__ /7c) Bestimmen Sie den Typ des Ausdrucks

x + (f true)

bezüglich der Signatur
Σ = {f 7→ Bool→ Nat, x 7→ Nat}

Geben Sie einen vollständigen Beweisbaum auf Grundlage der Regeln der statischen Semantik aus der Vorlesung
an.

Σ ⊢ x : Nat
Σ ⊢ f : Bool→ Nat Σ ⊢ true : Bool

Σ ⊢ f true : Nat
Σ ⊢ x + (f true) : Nat

2
Probeklausur KdP

WS 2025/26

Aufgabe 2 Dynamische Semantik (__ /20 Punkte)

a) Geben Sie jeweils an, zu welchem Wert die folgenden Ausdrücke auswerten (ohne Rechnung, Endergebnis genügt):

__ /61. (if 99 % 2 = 0 then 7 else 1) + 2

3

2. let f (x: Nat): Nat = if x < 4 then x + 3 else x * x in f 4

16

3. (fun (f: Nat -> Nat -> Nat) -> f 815 4711) (fun (x: Nat) -> (fun (y: Nat) -> x))

815

b) Setzen Sie in die Lücken jeweils einen typkorrekten Teilausdruck ein, sodass der Gesamtausdruck zum angegebenen
Ergebnis auswertet.

__ /4
1. ∅ ⊢ let x = (3 > 1,) in snd x && fst x ⇓ true

true

2. {g 7→ ⟨{z 7→ 7}, x, x + z⟩} ⊢ g ⇓ 12

5

__ /10c) Werten Sie den Ausdruck f (if a then 7 else 5) bezüglich der Umgebung

δ := {a 7→ f alse, f 7→ ⟨{a 7→ f alse}, x, x * 3⟩}

aus. Geben Sie einen vollständigen Beweisbaum auf Grundlage der Auswertungsregeln aus der Vorlesung an.

Tipp: Legen Sie das Blatt quer und zeigen Sie δ ⊢ f (if a then 7 else 5) ⇓ . . .

definiere aus Platzgründen δ2 := {a 7→ f alse, x 7→ 5}

δ ⊢ f ⇓ ⟨{a 7→ f alse}, x, x * 3⟩
δ ⊢ a ⇓ f alse δ ⊢ 5 ⇓ 5
δ ⊢ if a then 7 else 5 ⇓ 5

δ2 ⊢ x ⇓ 5 δ2 ⊢ 3 ⇓ 3
δ2 ⊢ x * 3 ⇓ 15

δ ⊢ f (if a then 7 else 5) ⇓ 15

3
Probeklausur KdP

WS 2025/26

Aufgabe 3 Entwurfsmuster (__ /20 Punkte)

Lösen Sie diese Aufgabe funktional, d. h. mutable und ref dürfen in Ihrer Lösung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

a) Schreiben Sie die Funktion interval: Nat -> List<Nat>, welche für eine gegebene natürliche Zahl n die Liste
[n; ...; 0] berechnet. Gehen Sie strikt nach Peano Entwurfsmuster vor.

Beispiele:

interval 0 = [0] interval 1 = [1; 0] interval 2 = [2; 1; 0]

__ /5
let rec interval (n: Nat): List<Nat> =

if n = 0N then [0N]
else n :: interval (n - 1N)

b) Schreiben Sie die Funktion ntimes<’a>: (’a -> ’a) -> ’a -> Nat -> ’a, welche eine Funktion f vom Typ
’a -> ’a, einen Startwert x vom Typ ’a sowie eine natürliche Zahl n nimmt und die Funktion f auf x n-mal anwen-
det. Für n = 0 soll x unverändert zurückgegeben werden. Gehen Sie strikt nach Peano Entwurfsmuster vor.

Beispiele:

ntimes (fun x -> x * x) 3 0 = 3 ntimes (fun x -> x * 2) 1 5 = 32

__ /5
let rec ntimes<’a> (f: ’a -> ’a) (x: ’a) (n: Nat): ’a =

if n = 0N then x
else f (ntimes f x (n - 1N))

4
Probeklausur KdP

WS 2025/26

Für die nächsten beiden Teilaufgaben verwenden wir folgenden Typen für Binärbäume mit Daten in den Blättern:

type Tree<’a> = | Leaf of ’a | Node of Tree<’a> * Tree<’a>

c) Schreiben Sie die Funktion completeOfHeight: Nat -> Tree<Unit>, die für eine gegebene natürliche Zahl n
den Baum der Höhe n berechnet, der die maximal mögliche Anzahl an Blättern besitzt. Gehen Sie strikt nach Peano
Entwurfsmuster vor. Sie dürfen nur einen rekursiven Aufruf verwenden.

Beispiele:

completeOfHeight 0 = Leaf ()
completeOfHeight 1 = Node (Leaf (), Leaf ())
completeOfHeight 2 = Node (Node (Leaf (), Leaf ()), Node (Leaf (), Leaf ()))

__ /5
let rec completeOfHeight (n: Nat): Tree<Unit> =

if n = 0N then Leaf ()
else

let t = completeOfHeight (n - 1N)
Node (t, t)

d) Schreiben Sie die Funktion numberOfLeaves<’a>: Tree<’a> -> Nat, welche die Anzahl der Blätter im gegebe-
nen Baum bestimmt. Gehen Sie nach Struktur Entwurfsmuster des Datentyps vor.

Beispiele:

numberOfLeaves (Leaf 5) = 1
numberOfLeaves Node (Leaf 5, Leaf 3) = 2
numberOfLeaves Node (Leaf 7, Node (Leaf 5, Leaf 3)) = 3

__ /5
let rec numberOfLeaves <’a> (t: Tree<’a>): Nat =

match t with
| Leaf _ -> 1N
| Node (l, r) -> (numberOfLeaves l) + (numberOfLeaves r)

5
Probeklausur KdP

WS 2025/26

Aufgabe 4 ConsSnoc Folgen (__ /20 Punkte)

Lösen Sie diese Aufgabe funktional, d.h. mutable und ref dürfen in Ihrer Lösung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten den folgenden Datentyp, um Folgen von Elementen darzustellen:

type Sequ<’T> =
| Nil
| Cons of ’T * Sequ<’T>
| Snoc of Sequ<’T> * ’T

Der Vorteil dieses Datentyps gegenüber herkömmlichen Listen liegt darin, dass man in konstanter Zeit Elemente an beiden
Enden der Folge hinzufügen kann:

• Nil ist die leere Folge,

• Cons (x, xs) ist die Folge, die x gefolgt von den Elementen aus der Folge xs enthält,

• Snoc (xs, x) ist die Folge, die die Elemente aus der Folge xs gefolgt von x enthält.

Somit ist Snoc (Cons (1, Cons (2, Nil)), 3) die Folge mit den Zahlen 1, 2 und 3.

Hinweis: Muster mit dem Listenkonstruktor :: sowie die Funktion @ passen nicht auf den hier definierten Datentyp!

a) Schreiben Sie eine Funktion sum, die eine Folge nimmt und deren Elemente summiert. Die Summe der leeren Folge
sei als 0 definiert.

Beispiel: sum (Snoc (Cons (9, Cons (8, Nil)), 7)) = 24

__ /6
let rec sum (xs: Sequ<Nat>): Nat =

match xs with
| Nil -> 0N
| Cons (x, xs’) | Snoc (xs’, x) -> x + sum xs’

6
Probeklausur KdP

WS 2025/26

Beachten Sie bei den folgenden beiden Teilaufgaben, dass die ConsSnoc Repräsentation nicht eindeutig ist. Zur Reprä-
sentation der Liste [1; 2] als Folge vom Typ Sequ<Nat> gibt es vier verschiedene Möglichkeiten:

• Cons (1, Cons (2, Nil))

• Cons (1, Snoc (Nil, 2))

• Snoc (Cons (1, Nil), 2)

• Snoc (Snoc (Nil, 1), 2)

Für die von Ihrer Funktion zurückgegebene Folge können Sie selbst entscheiden, welche Repräsentation Sie benutzen
wollen. Es gibt mehrere mögliche Lösungen.

b) Schreiben Sie eine Funktion tail, die eine Folge xs nimmt und eine Folge zurückgibt, die die Elemente aus xs ohne
das erste Element enthält. Die Reihenfolge der Elemente in der zurückgegebenen Folge soll der Reihenfolge aus xs
entsprechen. Wenn die Folge xs leer ist, dann soll None zurückgegeben werden.

Tipp: Gehen Sie streng nach dem Entwurfsmuster für den Typ Sequ<’T> vor.

Beispiele:
tail Nil = None
tail (Cons (7, Snoc (Nil, 2))) = Some (Snoc (Nil, 2))
tail (Snoc (Nil, 7)) = Some Nil
tail (Snoc (Cons (42, Cons (13, Nil)), 7)) = Some (Snoc (Cons (13, Nil), 7))

__ /7
let rec tail<’a> (xs: Sequ<’a>): Sequ<’a> option =

match xs with
| Nil -> None
| Cons (_, xs’) -> Some xs’
| Snoc (xs’, x) ->

match tail xs’ with
| Some z -> Some (Snoc (z, x))
| None -> Some Nil

7
Probeklausur KdP

WS 2025/26

c) Schreiben Sie eine Funktion append, die zwei Folgen nimmt und deren Konkatenation berechnet, also eine Folge, die
erst die Elemente aus der ersten und dann die Elemente aus der zweiten gegebenen Folge enthält.

__ /7
// Variante 1: Rekursion über xs
// Hierbei wird xs zu einer reinen Cons Folge umgeformt und schließlich ys
// statt Nil unverändert als Restfolge eingesetzt.
let rec append<’a> (xs: Sequ<’a>) (ys: Sequ<’a>): Sequ<’a> =

match xs with
| Nil -> ys
| Cons (x, xs’) -> Cons (x, append xs’ ys)
| Snoc (xs’, x) -> append xs’ (Cons (x, ys))

// Variante 2: Rekursion über ys (symmetrisch zu Variante 1)
// Hierbei wird ys zu einer reinen Snoc Folge umgeformt und schließlich xs
// statt Nil unverändert als Anfangsfolge eingesetzt.
let rec append’<’a> (xs: Sequ<’a>) (ys: Sequ<’a>): Sequ<’a> =

match ys with
| Nil -> xs
| Snoc (ys’, y) -> Snoc (append’ xs ys’, y)
| Cons (y, ys’) -> append’ (Snoc (xs, y)) ys’

// Es bringt jedoch keinen Vorteil, das Muster (xs, ys) abzugleichen , denn
// solange beide Folgen weder leer noch einelementig sind lässt sich der
// rekursive Aufruf nicht vermeiden. Insbesondere muss auf die Terminierung
// der Funktion geachten werden, wenn Elemente in beide Richtungen zwischen
// den beiden Folgen verschoben werden.

8
Probeklausur KdP

WS 2025/26

Aufgabe 5 Bäume (__ /20 Punkte)

Lösen Sie diese Aufgabe funktional, d. h. mutable und ref dürfen in Ihrer Lösung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten folgende Typen:

type Tree<’a> = | Leaf | Node of Tree<’a> * ’a * Tree<’a>

type Path = | End | Left of Path | Right of Path

Bäume des Typs Tree<’a> speichern ihre Daten in den Knoten. Der Typ Path repräsentiert Pfade im Baum. Pfade
beginnen immer in der Wurzel des Baumes.

Beispiel: Rechts sehen Sie den Code zu dem hier
dargestellten Baum und dem hervorgehobenen
Pfad mit den Knoten 10, 7, 2, 4.

10

7

2

0

ϵ ϵ

4

ϵ ϵ

9

ϵ ϵ

20

12

ϵ 16

ϵ ϵ

23

ϵ ϵ

let exTree: Tree<Nat> =
Node (
Node (
Node (
Node (Leaf, 0, Leaf),
2,
Node (Leaf, 4, Leaf)

),
7,
Node (Leaf, 9, Leaf)

),
10,
Node (
Node (
Leaf,
12,
Node (Leaf, 16, Leaf)

),
20,
Node (Leaf, 23, Leaf)

)
)

let exPath: Path = Left (Left (Right End))

a) Schreiben Sie eine Funktion lookup: Tree<’a> -> Path -> Option<’a>, die den Wert des Knotens bestimmt,
zu dem der gegebenen Pfad führt. Wenn der Pfad zu keinem Knoten führt, soll None zurückgegeben werden.

Beispiele:

lookup exTree End = Some 10
lookup exTree exPath = Some 4
lookup exTree (Left (Right (Left End))) = None
lookup exTree (Left (Right (Left (Left End)))) = None

__ /6
let rec lookup (t: Tree<’a>) (p: Path): Option<’a> =

match (t, p) with
| (Leaf, _) -> None
| (Node (_, x, _), End) -> Some x
| (Node (l, _, _), Left pp) -> lookup l pp
| (Node (_, _, r), Right pp) -> lookup r pp

9
Probeklausur KdP

WS 2025/26

b) Schreiben Sie eine Funktion update: Tree<’a> -> Path -> ’a -> Tree<’a>, die den Baum berechnet, der
entsteht, wenn man im gegebenen Baum den Wert des Knotens, zu dem der Pfad führt, zum gegebenen Wert x ändert.
Führt der Pfad zu keinem Knoten, soll der Baum unverändert zurückgegeben werden.

Beispiele:

let t = Node (Node (Leaf, 2, Leaf), 3, Leaf)
update t End 4 = Node (Node (Leaf, 2, Leaf), 4, Leaf)
update t (Left End) 4 = Node (Node (Leaf, 4, Leaf), 3, Leaf)
update t (Right End) 4 = Node (Node (Leaf, 2, Leaf), 3, Leaf)

__ /6
let rec update (t: Tree<’a>) (p: Path) (x: ’a): Tree<’a> =

match (t, p) with
| (Leaf, _) -> t
| (Node (l, _, r), End) -> Node (l, x, r)
| (Node (l, y, r), Left pp) -> Node (update l pp x, y, r)
| (Node (l, y, r), Right pp) -> Node (l, y, update r pp x)

c) Schreiben Sie eine Funktion search: Tree<Nat> -> Nat -> Option<Path>, die im gegebenen Suchbaum einen
Pfad zum gegebenen Wert x bestimmt. Befindet sich x nicht im Baum, soll None zurückgegeben werden.

Zur Erinnerung: Ein Suchbaum ist ein Baum, bei dem für jeden Knoten die Elemente im linken Teilbaum kleiner und
im rechten Teilbaum größer sind als das Element im Knoten selbst. Der Baum exTree oben ist ein Suchbaum.

Nutzen Sie aus, dass es sich um einen Suchbaum handelt.
Beispiel:

search exTree 10 = Some End
search exTree 4 = Some (Left (Left (Right (End))))
search exTree 3 = None

__ /8
let rec search (t: Tree<Nat>) (x: Nat): Option<Path> =

match t with
| Leaf -> None
| Node (l, y, r) ->

if x = y then Some End
elif x < y then

match search l x with
| None -> None
| Some p -> Some (Left p)

else
match search r x with
| None -> None
| Some p -> Some (Right p)

10
Probeklausur KdP

WS 2025/26

Aufgabe 6 Reguläre Ausdrücke (__ /20 Punkte)

a) Wir betrachten den regulären Ausdruck x*(xyx)*x*. Kreuzen Sie an, ob die folgenden Wörter in der von dem Aus-
druck beschriebenen Sprache enthalten sind oder nicht. Für richtige Antworten erhalten Sie einen Punkt, für falsche
Antworten wird ein Punkt abgezogen. Nicht markierte Zeilen wirken sich nicht auf die Punktzahl aus. Diese Teilauf-
gabe wird mit mindestens 0 Punkten bewertet.

__ /5
Wort enthalten nicht enthalten

xxxxxxxxxx X

xxxyxxyxxx X

xxyyxxyyxx X

xyxxyxxyxx X

xxxyxxyxxy X

b) Bestimmen Sie die folgenden Rechtsfaktoren. Geben Sie in der Rechnung jeweils den ersten Schritt explizit an,
nachfolgende Zwischenschritte dürfen Sie zusammenfassen.

__ /8
(ab|ba) / a = ((ab)/a) | ((ba)/a)
= b | ∅
= b

(a(b*))* / b = ((a(b*))/b) (a(b*))*
= ∅

((abc)*cba) / a = ((abc)*/a)cba | ∆((abc)*)((cba)/a)
= ((abc)/a)(abc)* cba | ϵ ∅
= bc(abc)*cba

((abc)*cba) / c = ((abc)*/c)cba | ∆((abc)*)((cba)/c)
= ∅ | ba
= ba

11
Probeklausur KdP

WS 2025/26

c) Für den regulären Ausdruck (ab|b)* wurden die Rechtsfaktoren, wie in folgendem Graphen dargestellt, ermittelt.
Implementieren Sie daraus die Akzeptorfunktionen. Gehen Sie dabei nach dem Verfahren aus der Vorlesung vor.
Nutzen Sie für das Alphabet den Typ type Alphabet = | A | B.

(ab|b)* b(ab|b)* ∅

a

b
a

b

a, b

__ /7
let rec accept0 (input: Alphabet list): Bool = // (ab|b)*
match input with
| [] -> true
| A::rest -> accept1 rest
| B::rest -> accept0 rest
and accept1 (input: Alphabet list): Bool = // b(ab|b)*
match input with
| [] -> false
| A::rest -> accept2 rest
| B::rest -> accept0 rest
and accept2 (input: Alphabet list): Bool = // ∅
match input with
| [] -> false
| A::rest -> accept2 rest
| B::rest -> accept2 rest

