Probeklausur KdP
1 WS 2025/26

Aufgabe 1 Statische Semantik (__ /20 Punkte)

Bei allen Zahlen, die in den Ausdriicken in dieser Aufgabe vorkommen, handelt es sich um Konstanten vom Typ Nat.

a) Geben Sie jeweils an, welchen Typ die folgenden Ausdriicke haben (ohne Beweisbaum).

1.

2.

3.

let x=3inlety=x+5iny % x _/6

Nat

let £ (x: Nat) = x> 7 in f 3

Bool

(fun (x: Nat) -> (fun (y: Nat) -> x + y)) 2

Nat -> Nat

b) Setzen Sie in die Liicken jeweils einen Teilausdruck ein, sodass sich insgesamt ein typkorrekter Ausdruck ergibt.

1.

fun (a: Bool) -> if a then 4711 else _/7

Teilausdruck vom Typ Nat, z.B. 815.

match with | [] -> true | x -> false

Liste eines beliebigen Typs, z.B. [1, [2], [2;4;6], [false].

. let x = in 5 + fst x + snd x

Teilausdruck vom Typ Nat * Nat, z.B. (1, 2).

type Rectangle = {height: Nat; width: Nat; filled: Bool}

let r = in r.filled

Teilausdruck vom Typ Rectangle, z.B. {height=1; width=2; filled=true}.

¢) Bestimmen Sie den Typ des Ausdrucks /7

x + (f true)

beziiglich der Signatur

> = {f —» Bool — Nat,x — Nat}

Geben Sie einen vollstindigen Beweisbaum auf Grundlage der Regeln der statischen Semantik aus der Vorlesung

an.

2+ f:Bool — Nat 2+ true : Bool
2+ x:Nat 2+ f true:Nat
YX+x + (f true) : Nat

Probeklausur KdP
2 WS 2025/26

Aufgabe 2 Dynamische Semantik (__ /20 Punkte)

a) Geben Sie jeweils an, zu welchem Wert die folgenden Ausdriicke auswerten (ohne Rechnung, Endergebnis geniigt):
1. (if 99 % 2 = 0 then 7 else 1) + 2 _/6
| s
2. let £ (x: Nat): Nat = if x < 4 then x + 3 else x * x in f 4
| 16
3. (fun (f: Nat -> Nat -> Nat) -> f 815 4711) (fun (x: Nat) -> (fun (y: Nat) -> X))

| s

b) Setzen Sie in die Liicken jeweils einen typkorrekten Teilausdruck ein, sodass der Gesamtausdruck zum angegebenen
Ergebnis auswertet.
_/4

1.0rlet x = 3 > 1,) in snd x && fst x| true
| true
2. g {z> Thx,x+ 2} g 12
| 5
c) Werten Sie den Ausdruck £ (if a then 7 else 5) beziiglich der Umgebung /10

6:={a false,f— ({a> false},x,x * 3)}

aus. Geben Sie einen vollstindigen Beweisbaum auf Grundlage der Auswertungsregeln aus der Vorlesung an.

Tipp: Legen Sie das Blatt quer und zeigen Sie 6 - £ (if a then 7 else 5) | ...

definiere aus Platzgriinden 0, := {a — false,x — 5}

oral false or5]5 rxl|5s 0nr313
o+ fl ({a false},x,x * 3) Or+if a then 7 else 5|5 oLrx * 315
o+ f (if a then 7 else 5) | 15

Probeklausur KdP
3 WS 2025/26

Aufgabe 3 Entwurfsmuster (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d. h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

a) Schreiben Sie die Funktion interval: Nat -> List<Nat>, welche fiir eine gegebene natiirliche Zahl n die Liste

[n; ...; 0] berechnet. Gehen Sie strikt nach Peano Entwurfsmuster vor.
Beispiele:
interval 0 = [0] interval 1 = [1; 0] interval 2 = [2; 1; 0]
| | /s
let rec interval (n: Nat): List<Nat> =
if n = ON then [ON]
else n :: interval (n - 1N)

b) Schreiben Sie die Funktion ntimes<’a>: (’a -> ’a) -> ’a -> Nat -> ’a, welche eine Funktion £ vom Typ
’a -> ’a, einen Startwert x vom Typ ’a sowie eine natiirliche Zahl n nimmt und die Funktion f auf x n-mal anwen-
det. Firn = 0 soll x unverédndert zuriickgegeben werden. Gehen Sie strikt nach Peano Entwurfsmuster vor.

Beispiele:
ntimes (fun x -> x * x) 3 0 = 3 ntimes (fun x -> x * 2) 1 5 = 32

= ’ ’ ’ il ’ _/5
let rec ntimes<’a> (f: ’a -> ’a) (x: ’a) (n: Nat): ’a =

if n = ON then x
else f (ntimes £ x (n - 1N))

Probeklausur KdP
4 WS 2025/26

Fiir die ndchsten beiden Teilaufgaben verwenden wir folgenden Typen fiir Bindrbdume mit Daten in den Bléttern:

type Tree<’a> = | Leaf of ’a | Node of Tree<’a> * Tree<’a>

¢) Schreiben Sie die Funktion completeOfHeight: Nat -> Tree<Unit>, die fiir eine gegebene natiirliche Zahl n
den Baum der Hohe n berechnet, der die maximal mogliche Anzahl an Blittern besitzt. Gehen Sie strikt nach Peano
Entwurfsmuster vor. Sie diirfen nur einen rekursiven Aufruf verwenden.

Beispiele:
completeOfHeight ® = Leaf ()

completeOfHeight 1 Node (Leaf (), Leaf ()
completeOfHeight 2 Node (Node (Leaf (), Leaf ()), Node (Leaf (), Leaf ()))

let rec completeOfHeight (n: Nat): Tree<Unit> = ——-/5
if n = ON then Leaf ()
else

let t = completeOfHeight (n - 1N)
Node (t, t)

d) Schreiben Sie die Funktion numberOfLeaves<’a>: Tree<’a> -> Nat, welche die Anzahl der Blitter im gegebe-
nen Baum bestimmt. Gehen Sie nach Struktur Entwurfsmuster des Datentyps vor.

Beispiele:

numberOfLeaves (Leaf 5) =1
numberOfLeaves Node (Leaf 5, Leaf 3) = 2

numberOflLeaves Node (Leaf 7, Node (Leaf 5, Leaf 3)) = 3

let rec numberOfLeaves<’a> (t: Tree<’a>): Nat = ——-/5
match t with
| Leaf _ -> 1IN

| Node (1, r) -> (numberOfLeaves 1) + (numberOfLeaves r)

Probeklausur KdP
5 WS 2025/26

Aufgabe 4 ConsSnoc Folgen (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d.h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten den folgenden Datentyp, um Folgen von Elementen darzustellen:
type Sequ<’'T> =

| Nil

| Cons of 'T * Sequ<’T>

| Snoc of Sequ<’T> * ’T

Der Vorteil dieses Datentyps gegeniiber herkdmmlichen Listen liegt darin, dass man in konstanter Zeit Elemente an beiden
Enden der Folge hinzufiigen kann:

e Nil ist die leere Folge,
e Cons (x, xs) istdie Folge, die x gefolgt von den Elementen aus der Folge xs enthilt,

e Snoc (xs, x) istdie Folge, die die Elemente aus der Folge xs gefolgt von x enthilt.

Somit ist Snoc (Cons (1, Cons (2, Nil)), 3) die Folge mit den Zahlen 1, 2 und 3.

Hinweis: Muster mit dem Listenkonstruktor : : sowie die Funktion @ passen nicht auf den hier definierten Datentyp!

a) Schreiben Sie eine Funktion sum, die eine Folge nimmt und deren Elemente summiert. Die Summe der leeren Folge
sei als ® definiert.

Beispiel: sum (Snoc (Cons (9, Cons (8, Nil)), 7)) = 24

_/6

let rec sum (xs: Sequ<Nat>): Nat =
match xs with
| Nil -> ON
| Cons (x, xs’) | Snoc (xs’, x) -> x + sum xS’

Probeklausur KdP
6 WS 2025/26

Beachten Sie bei den folgenden beiden Teilaufgaben, dass die ConsSnoc Reprisentation nicht eindeutig ist. Zur Repré-
sentation der Liste [1; 2] als Folge vom Typ Sequ<Nat> gibt es vier verschiedene Moglichkeiten:

e Cons (1, Cons (2, Nil)) e Snoc (Cons (1, Nil), 2)

e Cons (1, Snoc (Nil, 2)) e Snoc (Snmoc (Nil, 1), 2)

Fiir die von Threr Funktion zuriickgegebene Folge konnen Sie selbst entscheiden, welche Reprisentation Sie benutzen
wollen. Es gibt mehrere mogliche Losungen.

b) Schreiben Sie eine Funktion tail, die eine Folge xs nimmt und eine Folge zuriickgibt, die die Elemente aus xs ohne
das erste Element enthilt. Die Reihenfolge der Elemente in der zuriickgegebenen Folge soll der Reihenfolge aus xs
entsprechen. Wenn die Folge xs leer ist, dann soll None zuriickgegeben werden.

Tipp: Gehen Sie streng nach dem Entwurfsmuster fiir den Typ Sequ<’T> vor.

Beispiele:

tail Nil = None

tail (Cons (7, Snoc (Nil, 2))) = Some (Snoc (Nil, 2))

tail (Snoc (Nil, 7)) = Some Nil

tail (Snoc (Cons (42, Cons (13, Nil)), 7)) = Some (Snoc (Cons (13, Nil), 7))

let rec tail<’a> (xs: Sequ<’a>): Sequ<’a> option = __'/7
match xs with
| Nil -> None
| Cons (_, xs’) -> Some xs'’
| Snoc (xs’, x) ->
match tail xs’ with
| Some z -> Some (Snoc (z, X))
| None -> Some Nil

Probeklausur KdP
7 WS 2025/26

c) Schreiben Sie eine Funktion append, die zwei Folgen nimmt und deren Konkatenation berechnet, also eine Folge, die
erst die Elemente aus der ersten und dann die Elemente aus der zweiten gegebenen Folge enthiilt.

// Variante 1: Rekursion liber xs __'/7
// Hierbei wird xs zu einer reinen Cons Folge umgeformt und schlieflich ys
// statt Nil unverdndert als Restfolge eingesetzt.
let rec append<’a> (xs: Sequ<’a>) (ys: Sequ<’a>): Sequ<’a> =
match xs with
| Nil -> ys
| Cons (x, xs’) -> Cons (x, append xs’ ys)
| Snoc (xs’, x) -> append xs’ (Cons (x, ys))

// Variante 2: Rekursion iliber ys (symmetrisch zu Variante 1)
// Hierbei wird ys zu einer reinen Snoc Folge umgeformt und schlieflich xs
// statt Nil unverdndert als Anfangsfolge eingesetzt.
let rec append’<’a> (xs: Sequ<’a>) (ys: Sequ<’a>): Sequ<’a> =
match ys with
| Nil -> xs
| Snoc (ys’, y) -> Snoc (append’ xs ys’, y)
| Cons (y, ys’) -> append’ (Snoc (xs, y)) ys’

// Es bringt jedoch keinen Vorteil, das Muster (xs, ys) abzugleichen, denn
// solange beide Folgen weder leer noch einelementig sind ldsst sich der
// rekursive Aufruf nicht vermeiden. Insbesondere muss auf die Terminierung

// der Funktion geachten werden, wenn Elemente in beide Richtungen zwischen
// den beiden Folgen verschoben werden.

Probeklausur KdP
8 WS 2025/26

Aufgabe 5 Béiume (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d. h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten folgende Typen:
type Tree<’a> = | Leaf | Node of Tree<’a> * ’a * Tree<’a>
type Path = | End | Left of Path | Right of Path

Bédume des Typs Tree<’a> speichern ihre Daten in den Knoten. Der Typ Path représentiert Pfade im Baum. Pfade
beginnen immer in der Wurzel des Baumes.

Beispiel: Rechts sehen Sie den Code zu dem hier let exTree: Tree<Nat> =
dargestellten Baum und dem hervorgehobenen Node (
Pfad mit den Knoten 10, 7, 2, 4. Node (
Node (
Node (Leaf, 0, Leaf),
2,
Node (Leaf, 4, Leaf)
)
7,
Node (Leaf, 9, Leaf)
),
10,
Node (
Node (
Leaf,
12,
Node (Leaf, 16, Leaf)
)
20,
Node (Leaf, 23, Leaf)

€ € € € € €

)

let exPath: Path = Left (Left (Right End))

a) Schreiben Sie eine Funktion lookup: Tree<’a> -> Path -> Option<’a>, die den Wert des Knotens bestimmt,
zu dem der gegebenen Pfad fiihrt. Wenn der Pfad zu keinem Knoten fiihrt, soll None zuriickgegeben werden.

Beispiele:

lookup exTree End = Some 10

lookup exTree exPath = Some 4

lookup exTree (Left (Right (Left End))) = None

lookup exTree (Left (Right (Left (Left End)))) = None

let rec lookup (t: Tree<’a>) (p: Path): Option<’a> = ——-/6
match (t, p) with
| (Leaf, _) -> None
| (Node (_, x, _), End) -> Some Xx
| (Node (1, _, _), Left pp) -> lookup 1 pp
| (Node (_, _, r), Right pp) -> lookup r pp

Probeklausur KdP
9 WS 2025/26

b) Schreiben Sie eine Funktion update: Tree<’a> -> Path -> ’a -> Tree<’a>, die den Baum berechnet, der
entsteht, wenn man im gegebenen Baum den Wert des Knotens, zu dem der Pfad fiihrt, zum gegebenen Wert x dndert.
Fiihrt der Pfad zu keinem Knoten, soll der Baum unverédndert zuriickgegeben werden.

Beispiele:

let t = Node (Node (Leaf, 2, Leaf), 3, Leaf)

update t End 4 = Node (Node (Leaf, 2, Leaf), 4, Leaf)

update t (Left End) 4 = Node (Node (Leaf, 4, Leaf), 3, Leaf)
update t (Right End) 4 = Node (Node (Leaf, 2, Leaf), 3, Leaf)

let rec update (t: Tree<’a>) (p: Path) (x: ’a): Tree<’a> = ——-/6
match (t, p) with
| (Leaf, _) -> t
(Node (1, _, r), End) -> Node (1, x, r)

I
| (Node (1, y, r), Left pp) -> Node (update 1 pp x, y, r)
| (Node (1, y, r), Right pp) -> Node (1, y, update r pp Xx)

c) Schreiben Sie eine Funktion search: Tree<Nat> -> Nat -> Option<Path>, die im gegebenen Suchbaum einen
Pfad zum gegebenen Wert x bestimmt. Befindet sich x nicht im Baum, soll None zuriickgegeben werden.

Zur Erinnerung: Ein Suchbaum ist ein Baum, bei dem fiir jeden Knoten die Elemente im linken Teilbaum kleiner und
im rechten Teilbaum groBer sind als das Element im Knoten selbst. Der Baum exTree oben ist ein Suchbaum.

Nutzen Sie aus, dass es sich um einen Suchbaum handelt.
Beispiel:
search exTree 10 = Some End

search exTree 4 = Some (Left (Left (Right (End))))
search exTree 3 None

let rec search (t: Tree<Nat>) (x: Nat): Option<Path> = ——-/8
match t with
| Leaf -> None
| Node (1, y, r) ->
if x = y then Some End
elif x < y then
match search 1 x with
| None -> None
| Some p -> Some (Left p)
else
match search r x with
| None -> None
| Some p -> Some (Right p)

Probeklausur KdP
10 WS 2025/26

Aufgabe 6 Regulire Ausdriicke (__ /20 Punkte)

a) Wir betrachten den reguldren Ausdruck x* (xyx) *x*. Kreuzen Sie an, ob die folgenden Worter in der von dem Aus-
druck beschriebenen Sprache enthalten sind oder nicht. Fiir richtige Antworten erhalten Sie einen Punkt, fiir falsche
Antworten wird ein Punkt abgezogen. Nicht markierte Zeilen wirken sich nicht auf die Punktzahl aus. Diese Teilauf-
gabe wird mit mindestens 0 Punkten bewertet.

_/5

Wort enthalten | nicht enthalten
XXXXXXXXXX X

XXXYXXYXXX X

XXYYXXYYXX X
XYXXYXXYXX X

XXXYXXYXXY X

b) Bestimmen Sie die folgenden Rechtsfaktoren. Geben Sie in der Rechnung jeweils den ersten Schritt explizit an,
nachfolgende Zwischenschritte diirfen Sie zusammenfassen.

8
(ablba) / a = ((ab)/a) | ((ba)/a) __'/
=b | 0

=b

(a(b*))>* / b = ((a(b*))/b) (a(b*))*
=0

((abc)*cba) / a (Cabc)*/a)cba | A(Cabc)*) ((cba)/a)
= ((abc)/a)(abc)* cba | € 0
= bc(abc) *cba

((abc)*cba) / c
=0 | ba
= ba

(Cabc)*/c)cba | A((abc)*) ((cba)/c)

Probeklausur KdP
11 WS 2025/26

c) Fiir den reguldren Ausdruck (ab|b)* wurden die Rechtsfaktoren, wie in folgendem Graphen dargestellt, ermittelt.
Implementieren Sie daraus die Akzeptorfunktionen. Gehen Sie dabei nach dem Verfahren aus der Vorlesung vor.

Nutzen Sie fiir das Alphabet den Typ type Alphabet = | A | B.
a
b b(ab|b)* a @:)a,b
b
. : . _ 7
let rec accept® (input: Alphabet list): Bool = // (ab|b)*

match input with

| [] -> true

| A::rest -> acceptl rest
| B::rest -> accept® rest

and acceptl (input: Alphabet 1list): Bool = // b(ab|/b)*
match input with

| [1 -> false

| A::rest -> accept2 rest

| B::rest -> accept® rest

and accept2 (input: Alphabet list): Bool = // 0

match input with

| [1 -> false

| A::rest -> accept2 rest
| B::rest -> accept2 rest

