Prof. Ralf Hinze Rheinland-Pfilzische Technische Universitit Kaiserslautern Landau (RPTU)
C. Alexandru, M.Sc. Standort Kaiserslautern - Fachbereich Informatik - AG Programmiersprachen
A. Dinges, M.Sc.
F. Winkler, M.Sc.

Probeklausur Konzepte der Programmierung

Dienstag, 16.12.2025
Exemplar-ID: 091

Nachname:

Vorname:

Matrikelnummer:

Hinweise:

1.
2.
3.

Schreiben Sie direkt bei Beginn der Klausur Ihren Namen, Vornamen und Matrikelnummer auf dieses Deckblatt.
Achten Sie darauf, dass Thre Klausur vollstdndig ist (15 Seiten)!
Sie haben 90 Minuten Zeit, die Klausur zu bearbeiten.

Schreiben Sie Thre Losungen gut lesbar mit Kugelschreiber oder Fiillfederhalter (kein Bleistift, kein Rotstift, kein
Griinstift)! Unleserliche Losungen werden nicht korrigiert!

Sie diirfen keine eigenen Blitter verwenden. Lassen Sie diese Klausur in Threm eigenen Interesse geheftet; lose
Klausurblitter werden nicht korrigiert!

Die Aufgaben miissen auf den jeweiligen Blittern bearbeitet werden. Sollte der Platz nicht ausreichen, so benutzen
Sie die Riickseite des betreffenden Blattes oder die Zusatzblitter am Ende der Klausur. Sollte auch dies nicht aus-
reichen, bekommen Sie weitere Blitter bei der Aufsicht. Verweisen Sie in jedem Fall deutlich auf die Fortsetzungen
Threr Aufgaben!

. Als Hilfsmittel zur Klausur zugelassen sind zwei beidseitig handbeschriebene A4-Bléitter sowie Sprachwor-

terbiicher. Dariiber hinaus sind keine Hilfsmittel erlaubt. Die Benutzung von Handys, Smartwatches und anderen
elektronischen Geriten ist nicht gestattet. Handys miissen ausgeschaltet sein! Auf IThrem Platz darf sich kein Ruck-
sack o. 4. befinden. Bei Verstofien gegen diese Regeln sowie bei Tduschungsversuchen wird die Klausur mit
0 Punkten gewertet. Tduschungsversuche werden dariiber hinaus dem Priifungsamt gemeldet.

. Lesen Sie vor der Bearbeitung einer Aufgabe den gesamten Aufgabentext sorgfiltig durch! Die Aufgabenteile jeder

Aufgabe bauen in der Regel nicht aufeinander auf. Sie konnen also in den meisten Féllen die Bearbeitung einer
Aufgabe fortsetzen, auch wenn Sie einen Aufgabenteil nicht gelost haben.

. Der Hinweis "Verwenden Sie keine Bibliotheksfunktionen”, mit dem einige Aufgaben versehen sind, bezieht sich

auf F# Funktionen, die nach dem Schema Modulname. funktionsname benannt sind, also z.B. List.map. Die
vordefinierten Funktionen not, min, max und @ sind von diesem Verbot nicht betroffen.

Aufgabe: 1 2 3 4 5 6
Punkte:

Maximum: 20 20 20 20 20 20
Gesamtpunktzahl:

Maximum: 120

Probeklausur KdP
Exemplar-ID: 091 2 WS 2025/26

Aufgabe 1 Statische Semantik (__ /20 Punkte)

Bei allen Zahlen, die in den Ausdriicken in dieser Aufgabe vorkommen, handelt es sich um Konstanten vom Typ Nat.

a) Geben Sie jeweils an, welchen Typ die folgenden Ausdriicke haben (ohne Beweisbaum).

l.letx=3inlety=x+5iny % x _/6
2. let £ (x: Nat) = x> 7 in £ 3
3. (fun (x: Nat) -> (fun (y: Nat) -> x + y)) 2

b) Setzen Sie in die Liicken jeweils einen Teilausdruck ein, sodass sich insgesamt ein typkorrekter Ausdruck ergibt.

_ /7

1. fun (a: Bool) -> if a then 4711 else

2. match with | [] -> true | x -> false

3. let x = in 5 + fst x + snd x

4. type Rectangle = {height: Nat; width: Nat; filled: Bool}

let r = in r.filled

Probeklausur KdP
Exemplar-ID: 091 3 WS 2025/26

c) Bestimmen Sie den Typ des Ausdrucks /7
x + (f true)

beziiglich der Signatur
2 ={f — Bool — Nat,x +— Nat}

Geben Sie einen vollstindigen Beweisbaum auf Grundlage der Regeln der statischen Semantik aus der Vorlesung
an.

Probeklausur KdP
Exemplar-ID: 091 4 WS 2025/26

Aufgabe 2 Dynamische Semantik (__ /20 Punkte)

a) Geben Sie jeweils an, zu welchem Wert die folgenden Ausdriicke auswerten (ohne Rechnung, Endergebnis geniigt):

1. (Af 99 % 2 = 0 then 7 else 1) + 2 _/6

2. let £ (x: Nat): Nat = if x < 4 then x + 3 else x * x in f 4

3. (fun (f: Nat -> Nat -> Nat) -> f 815 4711) (fun (x: Nat) -> (fun (y: Nat) -> x))

b) Setzen Sie in die Liicken jeweils einen typkorrekten Teilausdruck ein, sodass der Gesamtausdruck zum angegebenen
Ergebnis auswertet.
_/4

1.0rlet x = 3 > 1,) in snd x && fst x| true

2. gz TLx,x+ 2} kg y12

Probeklausur KdP
Exemplar-ID: 091 5 WS 2025/26

c) Werten Sie den Ausdruck £ (if a then 7 else 5) beziiglich der Umgebung /10
0 :={aw false,f — ({a— false},x,x * 3)}

aus. Geben Sie einen vollstindigen Beweisbaum auf Grundlage der Auswertungsregeln aus der Vorlesung an.

Tipp: Legen Sie das Blatt quer und zeigen Sie 6 + £ (if a then 7 else 5) |J...

Probeklausur KdP
Exemplar-ID: 091 6 WS 2025/26

Aufgabe 3 Entwurfsmuster (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d. h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

a) Schreiben Sie die Funktion interval: Nat -> List<Nat>, welche fiir eine gegebene natiirliche Zahl n die Liste

[n; ...; 0] berechnet. Gehen Sie strikt nach Peano Entwurfsmuster vor.

Beispiele:

interval 0 = [0] interval 1 = [1; 0] interval 2 = [2; 1; 0]

let rec interval (n: Nat): List<Nat> = /5

b) Schreiben Sie die Funktion ntimes<’a>: ('a -> ’a) -> ’a -> Nat -> ’a, welche eine Funktion £ vom Typ
’a -> ’a, einen Startwert x vom Typ ’a sowie eine natiirliche Zahl n nimmt und die Funktion f auf x n-mal anwen-
det. Fiirn = 0 soll x unverédndert zuriickgegeben werden. Gehen Sie strikt nach Peano Entwurfsmuster vor.

Beispiele:

ntimes (fun x -> x * x) 3 0 = 3 ntimes (fun x -> x * 2) 1 5 = 32

let rec ntimes<’a> (f: ’a -> ’a) (x: ’a) (n: Nat): ’a = /5

Probeklausur KdP
Exemplar-ID: 091 7 WS 2025/26

Fiir die ndchsten beiden Teilaufgaben verwenden wir folgenden Typen fiir Bindrbdume mit Daten in den Bléttern:

type Tree<’a> = | Leaf of ’a | Node of Tree<’a> * Tree<’a>

¢) Schreiben Sie die Funktion completeOfHeight: Nat -> Tree<Unit>, die fiir eine gegebene natiirliche Zahl n
den Baum der Hohe n berechnet, der die maximal mogliche Anzahl an Blittern besitzt. Gehen Sie strikt nach Peano
Entwurfsmuster vor. Sie diirfen nur einen rekursiven Aufruf verwenden.

Beispiele:
completeOfHeight 0

completeOfHeight 1
completeOfHeight 2

Leaf O
Node (Leaf (), Leaf ()
Node (Node (Leaf (), Leaf ()), Node (Leaf (), Leaf ()))

_/5

let rec completeOfHeight (n: Nat): Tree<Unit> =

d) Schreiben Sie die Funktion numberOfLeaves<’a>: Tree<’a> -> Nat, welche die Anzahl der Blitter im gegebe-
nen Baum bestimmt. Gehen Sie nach Struktur Entwurfsmuster des Datentyps vor.

Beispiele:

numberOflLeaves (Leaf 5) =1
numberOfLeaves Node (Leaf 5, Leaf 3) = 2
numberOfLeaves Node (Leaf 7, Node (Leaf 5, Leaf 3)) = 3

let rec numberOfLeaves<’a> (t: Tree<’a>): Nat =

_/5

Probeklausur KdP
Exemplar-ID: 091 8 WS 2025/26

Aufgabe 4 ConsSnoc Folgen (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d.h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten den folgenden Datentyp, um Folgen von Elementen darzustellen:

type Sequ<’'T> =
| Nil
| Cons of 'T * Sequ<’T>
| Snoc of Sequ<’T> * ’T

Der Vorteil dieses Datentyps gegeniiber herkdmmlichen Listen liegt darin, dass man in konstanter Zeit Elemente an beiden
Enden der Folge hinzufiigen kann:

e Nil ist die leere Folge,
e Cons (x, xs) istdie Folge, die x gefolgt von den Elementen aus der Folge xs enthilt,
e Snoc (xs, x) istdie Folge, die die Elemente aus der Folge xs gefolgt von x enthilt.

Somit ist Snoc (Cons (1, Cons (2, Nil)), 3) die Folge mit den Zahlen 1, 2 und 3.

Hinweis: Muster mit dem Listenkonstruktor : : sowie die Funktion @ passen nicht auf den hier definierten Datentyp!

a) Schreiben Sie eine Funktion sum, die eine Folge nimmt und deren Elemente summiert. Die Summe der leeren Folge
sei als ® definiert.

Beispiel: sum (Snoc (Cons (9, Cons (8, Nil)), 7)) = 24

let rec sum (xs: Sequ<Nat>): Nat = _/6

Probeklausur KdP
Exemplar-ID: 091 9 WS 2025/26

Beachten Sie bei den folgenden beiden Teilaufgaben, dass die ConsSnoc Reprisentation nicht eindeutig ist. Zur Repré-
sentation der Liste [1; 2] als Folge vom Typ Sequ<Nat> gibt es vier verschiedene Moglichkeiten:

e Cons (1, Cons (2, Nil)) e Snoc (Cons (1, Nil), 2)

e Cons (1, Snoc (Nil, 2)) e Snoc (Snmoc (Nil, 1), 2)

Fiir die von Threr Funktion zuriickgegebene Folge konnen Sie selbst entscheiden, welche Reprisentation Sie benutzen
wollen. Es gibt mehrere mogliche Losungen.

b) Schreiben Sie eine Funktion tail, die eine Folge xs nimmt und eine Folge zuriickgibt, die die Elemente aus xs ohne
das erste Element enthilt. Die Reihenfolge der Elemente in der zuriickgegebenen Folge soll der Reihenfolge aus xs
entsprechen. Wenn die Folge xs leer ist, dann soll None zuriickgegeben werden.

Tipp: Gehen Sie streng nach dem Entwurfsmuster fiir den Typ Sequ<’T> vor.

Beispiele:

tail Nil = None

tail (Cons (7, Snoc (Nil, 2))) = Some (Snoc (Nil, 2))

tail (Snoc (Nil, 7)) = Some Nil

tail (Snoc (Cons (42, Cons (13, Nil)), 7)) = Some (Snoc (Cons (13, Nil), 7))

let rec tail<’a> (xs: Sequ<’a>): Sequ<’a> option = _/7

¢) Schreiben Sie eine Funktion append, die zwei Folgen nimmt und deren Konkatenation berechnet, also eine Folge, die
erst die Elemente aus der ersten und dann die Elemente aus der zweiten gegebenen Folge enthiilt.

let rec append<’a> (xs: Sequ<’a>) (ys: Sequ<’a>): Sequ<’a> = _/7

Probeklausur KdP
Exemplar-ID: 091 10 WS 2025/26

Aufgabe 5 Béiume (__ /20 Punkte)

Losen Sie diese Aufgabe funktional, d. h. mutable und ref diirfen in Ihrer Losung nicht vorkommen. Verwenden Sie
keine Bibliotheksfunktionen!

Wir betrachten folgende Typen:

type Tree<’a> = | Leaf | Node of Tree<’a> * ’a * Tree<’a>

type Path = | End | Left of Path | Right of Path

Bédume des Typs Tree<’a> speichern ihre Daten in den Knoten. Der Typ Path représentiert Pfade im Baum. Pfade
beginnen immer in der Wurzel des Baumes.

Beispiel: Rechts sehen Sie den Code zu dem hier let exTree: Tree<Nat> =
dargestellten Baum und dem hervorgehobenen Node (
Pfad mit den Knoten 10, 7, 2, 4. Node (
Node (
Node (Leaf, 0, Leaf),
2,
Node (Leaf, 4, Leaf)
)
7,
Node (Leaf, 9, Leaf)
),
10,
Node (
Node (
Leaf,
12,
Node (Leaf, 16, Leaf)
)
20,
Node (Leaf, 23, Leaf)

€ € € € € €

)

let exPath: Path = Left (Left (Right End))

Probeklausur KdP

Exemplar-ID: 091 11 WS 2025/26

a) Schreiben Sie eine Funktion lookup: Tree<’a> -> Path -> Option<’a>, die den Wert des Knotens bestimmt,

b)

zu dem der gegebenen Pfad fiihrt. Wenn der Pfad zu keinem Knoten fiihrt, soll None zuriickgegeben werden.
Beispiele:

lookup exTree End = Some 10

lookup exTree exPath = Some 4

lookup exTree (Left (Right (Left End))) = None
lookup exTree (Left (Right (Left (Left End)))) = None

let rec lookup (t: Tree<’a>) (p: Path): Option<’a> =

_/6

Schreiben Sie eine Funktion update: Tree<’a> -> Path -> ’a -> Tree<’a>, die den Baum berechnet, der
entsteht, wenn man im gegebenen Baum den Wert des Knotens, zu dem der Pfad fiihrt, zum gegebenen Wert x dndert.
Fiihrt der Pfad zu keinem Knoten, soll der Baum unverindert zuriickgegeben werden.

Beispiele:
let t = Node (Node (Leaf, 2, Leaf), 3, Leaf)
update t End 4 = Node (Node (Leaf, 2, Leaf), 4, Leaf)

update t (Left End) 4 = Node (Node (Leaf, 4, Leaf), 3, Leaf)
update t (Right End) 4 = Node (Node (Leaf, 2, Leaf), 3, Leaf)

let rec update (t: Tree<’a>) (p: Path) (x: ’a): Tree<’a> =

__/6

Probeklausur KdP

Exemplar-ID: 091 12 WS 2025/26

c) Schreiben Sie eine Funktion search: Tree<Nat> -> Nat -> Option<Path>, die im gegebenen Suchbaum einen
Pfad zum gegebenen Wert x bestimmt. Befindet sich x nicht im Baum, soll None zuriickgegeben werden.

Zur Erinnerung: Ein Suchbaum ist ein Baum, bei dem fiir jeden Knoten die Elemente im linken Teilbaum kleiner und
im rechten Teilbaum grofBer sind als das Element im Knoten selbst. Der Baum exTree oben ist ein Suchbaum.
Nutzen Sie aus, dass es sich um einen Suchbaum handelt.

Beispiel:

search exTree 10 = Some End

search exTree 4 = Some (Left (Left (Right (End))))
search exTree 3 None

let rec search (t: Tree<Nat>) (x: Nat): Option<Path> =

_/8

Probeklausur KdP

Exemplar-ID: 091 13 WS 2025/26

Aufgabe 6 Regulire Ausdriicke (__ /20 Punkte)

a) Wir betrachten den reguldren Ausdruck x* (xyx) *x*. Kreuzen Sie an, ob die folgenden Worter in der von dem Aus-

b)

druck beschriebenen Sprache enthalten sind oder nicht. Fiir richtige Antworten erhalten Sie einen Punkt, fiir falsche
Antworten wird ein Punkt abgezogen. Nicht markierte Zeilen wirken sich nicht auf die Punktzahl aus. Diese Teilauf-
gabe wird mit mindestens 0 Punkten bewertet.

_/5

Wort enthalten | nicht enthalten

XXXXXXXXXX

XXXYXXYXXX

XXYYXXYYXX

XYXXYXXYXX

XXXYXXYXXY

Bestimmen Sie die folgenden Rechtsfaktoren. Geben Sie in der Rechnung jeweils den ersten Schritt explizit an,
nachfolgende Zwischenschritte diirfen Sie zusammenfassen.

(ablba) / a = _/8
(a(b*))* / b =

((abc)*cba) / a

((abc)*cba) / c

Probeklausur KdP
Exemplar-ID: 091 14 WS 2025/26

c) Fiir den reguldren Ausdruck (ab|b)* wurden die Rechtsfaktoren, wie in folgendem Graphen dargestellt, ermittelt.
Implementieren Sie daraus die Akzeptorfunktionen. Gehen Sie dabei nach dem Verfahren aus der Vorlesung vor.

Nutzen Sie fiir das Alphabet den Typ type Alphabet = | A | B.
a

b b(ab|b)* a @:)a,b
b

/7

Probeklausur KdP
Exemplar-ID: 091 15 WS 2025/26

Fortsetzung von Aufgabe

