
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 4: Konzepte der Programmierung (WS 2025/26)

Klausuranmeldung Denken Sie daran, die Klausur und die Vorleistung im Prüfungsamt anzumelden!

Aufgabe 1 Datentypen (Präsenzaufgabe)

Motivation: Um Programmieraufgaben im ExClaim-System testen zu können, müssen wir die darin ver-
wendeten Typdefinitionen vorgeben. In dieser Aufgabe sollen Sie (rekursive) Varianten und Records wie-
derholen und selbst entsprechende Typen definieren, um Sachverhalte zu modellieren. Sie können sich an
den Vorlesungsfolien 280 bis 372 sowie am Skript Kapitel 4.1 und 4.2 orientieren.

a) Varianten

1. Definieren Sie einen Variantentyp zur Modellierung von Tierarten, der die Ausprägungen Hund,
Katze und Maus annehmen kann.

Zusätzlich soll ein Variantentyp für Lebewesen definiert werden: Bei einem Lebewesen kann es
sich entweder um ein Tier einer der oben genannten Tierarten handeln, oder um ein Lebewesen,
das kein Tier ist.

type Tierart =
| Hund
| Katze
| Maus

type Lebewesen =
| KeinTier
| Tier of Tierart

2. Schreiben Sie eine Funktion eineMaus: Tierart -> Bool, die prüft, ob es sich bei der übergebenen
Tierart um eine Maus handelt.

let eineMaus (t: Tierart): Bool =
match t with
| Maus -> true
| _ -> false



3. Schreiben Sie eine Funktion eineKatze: Lebewesen -> Bool, die prüft, ob es sich beim übergenenen
Lebewesen um eine Katze handelt.

let eineKatze (l: Lebewesen): Bool =
match l with
| KeinTier -> false
| Tier t ->

match t with
| Katze -> true
| _ -> false

let eineKatze ' (l: Lebewesen): Bool =
match l with
| Tier Katze -> true
| _ -> false

4. Schreiben Sie eine Funktion mindestensEinTier: Lebewesen -> Lebewesen -> Bool, die prüft, ob es
sich bei mindestens einem der beiden Argumente um ein Tier handelt.

let mindestensEinTier (l1: Lebewesen) (l2: Lebewesen): Bool =
match (l1, l2) with
| (KeinTier, KeinTier) -> false
| _ -> true

b) Rekursive Varianten

1. Wiederholen Sie den Typ Nats für Listen natürlicher Zahlen

type Nats =
| Nil
| Cons of Nat * Nats

2. Schreiben Sie eine Funktion findMax, welche die größte Zahl in einer Liste natürlicher Zahlen
zurückgibt.

let rec findMax (ns: Nats): Nat =
match ns with
| Nil -> 0N
| Cons (x, xs) -> max x (findMax xs)

3. Schreiben Sie eine Funktion plusOne, die alle Zahlen in der Liste um eins erhöht.

let rec plusOne (ns: Nats): Nats =
match ns with
| Nil -> Nil
| Cons (x, xs) -> Cons (x + 1, plusOne xs)

2



c) Records

1. Schreiben Sie einen Record-Typ, um Eigenschaften von Büchern zu speichern. Gesichert werden
soll der Titel, der Name der Autorin/des Autors, das Veröffentlichungsjahr sowie die ISBN.

Verwenden Sie den Record, um das Buch „Harry Potter and the Philosopher’s Stone“ von „J. K.
Rowling“ aus dem Jahr 1997 mit der ISBN 9780747532743 zu erfassen.

type Buch = {titel: String ; autor: String ; jahr: Nat ; isbn: Nat}
let harry = { titel="Harry Potter and the Philosopher 's Stone"

; autor="J. K. Rowling" ; jahr = 1997N ; isbn = 9780747532743N }

2. Wo liegt der Vorteil gegenüber einem entsprechenden Quadrupel?

type Buch' = String * String * Nat * Nat

Hier müssen wir uns merken, welche Information an welcher Position steht. Durch die Angabe
von Labels ist die Reihenfolge bei Records egal. Aussagekräftige Labels schaffen zusätzliche
Klarheit beim Lesen und Schreiben des Codes.

3



Aufgabe 2 Kalenderdaten (Einreichaufgabe, 7 Punkte)

Motivation: In dieser Aufgabe sollen Sie sich mit Variantentypen und Records beschäftigen. Sie können
sich an den Vorlesungsfolien 280 bis 326 sowie am Skript Kapitel 4.1 und 4.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Dates.fs aus der Vorlage Aufgabe-4-2.zip.

Wir repräsentieren ein Kalenderdatum durch folgende Datentypen:

type Weekday = | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
type Date = { year: Nat; month: Nat; day: Nat; weekday: Weekday }

Ein Datum besteht also aus je drei Zahlen für das Jahr, den Monat und den Tag, sowie dem Wochentag.

Hinweis: Einige Teilaufgaben können Sie mit Hilfe der Funktionen aus vorherigen Teilaufgaben lösen.

a) Schreiben Sie eine Funktion nextWeekday: Weekday -> Weekday, die einen Wochentag nimmt und den
nächsten Wochentag zurückgibt.

Beispiel:
nextWeekday Monday = Tuesday

let nextWeekday (d: Weekday): Weekday =
match d with
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday

b) Schreiben Sie eine Funktion isLeapYear: Nat -> Bool, die eine natürliche Zahl nimmt, die eine Jahres-
zahl darstellen soll, und prüft, ob diese ein Schaltjahr1 ist.

Beispiele:
isLeapYear 2025 = false

isLeapYear 2024 = true

let isLeapYear (y: Nat): Bool =
(y % 4N = 0N) && (y % 100N <> 0N || y % 400N = 0N)

1https://de.wikipedia.org/wiki/Schaltjahr#Gregorianischer_Kalender

4

https://de.wikipedia.org/wiki/Schaltjahr#Gregorianischer_Kalender


c) Schreiben Sie eine Funktion daysInMonth: Nat -> Nat -> Nat, die eine Jahreszahl sowie eine Monatszahl
nimmmt und zurückgibt, wie viele Tage es im Monat gibt. Ist der Monatswert nicht sinnvoll, ist es egal,
was zurückgegeben wird.

Beispiel:
daysInMonth 2023 2 = 28

daysInMonth 2024 2 = 29

daysInMonth 2025 11 = 30

let daysInMonth (year: Nat) (month: Nat): Nat =
if month = 2N then if isLeapYear year then 29N else 28N
elif month = 4N || month = 6N || month = 9N || month = 11N then 30N
else 31N

d) Schreiben Sie eine Funktion nextDate: Date -> Date, die ein Datum nimmt und das nächste Datum
zurückgibt. Sie müssen nicht prüfen, ob die Eingabe ein gültiges Datum ist.

Beispiel:
nextDate { year = 2025N; month = 11N; day = 18N; weekday = Tuesday } =

{ year = 2025N; month = 11N; day = 19N; weekday = Wednesday }

nextDate { year = 2025N; month = 12N; day = 31N; weekday = Wednesday } =

{ year = 2026N; month = 1N; day = 1N; weekday = Thursday }

let nextDate (d: Date): Date =
let nextDay = nextWeekday d.weekday
let nextDayNum = d.day + 1N
if nextDayNum > daysInMonth d.year d.month then

if d.month = 12N then
{ year = d.year + 1N; month = 1N; day = 1N; weekday = nextDay }

else
{ year = d.year; month = d.month + 1N; day = 1N; weekday = nextDay }

else
{ year = d.year; month = d.month; day = nextDayNum; weekday = nextDay }

e) Schreiben Sie eine Funktion nextDateN: Date -> Nat -> Date, die ein Datum und eine natürliche Zahl
nimmt und das Datum zurückgibt, das nach der angegebenen Anzahl von Tagen folgt. Sie müssen nicht
prüfen, ob die Eingabe ein gültiges Datum ist.

Tipp: Nutzen Sie das Peano-Entwurfsmuster und Ihre Funktion aus der vorherigen Teilaufgabe.

let rec nextDateN (d: Date) (n: Nat): Date =
if n = 0N then d
else nextDateN (nextDate d) (n - 1N)

5



f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion validateWeekday: Date -> Bool option, die ein
Datum nimmt und prüft, ob der Wochentag mit dem Datum übereinstimmt. Sie soll darüber hinaus nichts
prüfen.

Beispiel:
validateWeekday { year = 2025N; month = 11N; day = 18N; weekday = Tuesday } = true

validateWeekday { year = 2025N; month = 11N; day = 18N; weekday = Wednesday } = false

Wir verwenden die Formel von Wikipedia:

let rec numberToWeekday (x: Nat): Weekday =
if x = 0N then Sunday
elif x = 1N then Monday
elif x = 2N then Tuesday
elif x = 3N then Wednesday
elif x = 4N then Thursday
elif x = 5N then Friday
elif x = 6N then Saturday
else numberToWeekday (x % 7N)

let monthFactor (d: Date): Nat =
let m = d.month
if m = 3N then 2N
elif m = 4N then 5N
elif m = 5N then 0N
elif m = 6N then 3N
elif m = 7N then 5N
elif m = 8N then 1N
elif m = 9N then 4N
elif m = 10N then 6N
elif m = 11N then 2N
elif m = 12N then 4N
elif m = 1N then 0N
elif m = 2N then 3N
else 0N

let firstDigitsOfYear (d: Date): Nat =
if d.month <= 2N then (d.year - 1N)/100N else d.year/100N

let lastDigitsOfYear (d: Date): Nat =
if d.month <= 2N then (d.year - 1N)%100N else d.year%100N

let validateWeekday (d: Date): Bool =
let y = lastDigitsOfYear d
let c = firstDigitsOfYear d
let m = monthFactor d
let actualWdAsNumber = d.day + m + y + y / 4N + c / 4N - 2N*c
let actualWeekday = numberToWeekday (actualWdAsNumber % 7N)
actualWeekday = d.weekday

6

https://de.wikipedia.org/wiki/Wochentagsberechnung#Formel


Aufgabe 3 Listen natürlicher Zahlen (Einreichaufgabe, 8 Punkte)

Motivation: In dieser Aufgabe sollen Sie sich mit rekursiven Variantentypen beschäftigen. Sie können sich
an den Vorlesungsfolien 332 bis 351 sowie am Skript Kapitel 4.2.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Nats.fs aus der Vorlage Aufgabe-4-3.zip.

Bevor wir nächste Woche den in F# eingebauten Typ für Listen kennenlernen, arbeiten wir diese Woche
zunächst mit einem selbst definierten Typ für Listen natürlicher Zahlen. Alles was wir dazu brauchen, sind
rekursive Varianten und Tupel. Sie kennen den Typ bereits aus der Vorlesung:

type Nats = | Nil | Cons of Nat * Nats

Hinweis: Wenn Sie im Internet nach Teilen der Aufgabenstellung suchen, werden Sie vielleicht auf das List
F#-Modul stoßen, das allerdings mit dem in F# eingebauten Typ für Listen arbeitet. Dieses Modul werden
wir auf einem späteren Übungsblatt vorstellen, hier dürfen Sie es in Ihrer Lösung jedoch nicht verwenden.

Wir verwenden bei einigen Teilaufgaben die Beispielliste:

let ex = Cons (2N, Cons (4N, Cons (3N, Cons(4N, Cons(2N, Cons (1N, Nil))))))

a) Schreiben Sie eine Funktion concat: Nats -> Nats -> Nats, die zwei Listen natürlicher Zahlen xs und
ys nimmt und deren Konkatenation berechnet, also die Liste in der zuerst alle Zahlen aus xs und dann
die Zahlen aus ys kommen.

Beispiele:
concat Nil ex = ex

concat ex Nil = ex

concat (Cons (1N, Nil)) (Cons (2N, Nil)) = Cons (1N,Cons (2N,Nil))

let rec concat (xs: Nats) (ys: Nats): Nats =
match xs with
| Nil -> ys
| Cons (x, zs) -> Cons (x, concat zs ys)

7



b) Schreiben Sie eine Funktion mirror: Nats -> Nats, die eine Liste natürlicher Zahlen nimmt und die
gespiegelte Liste berechnet, also eine Liste in der die Zahlen in umgekehrter Reihenfolge enthalten sind.

Beispiele:
mirror Nil = Nil

mirror ex = Cons (1N,Cons (2N,Cons (4N,Cons (3N,Cons (4N,Cons (2N,Nil))))))

Freiwillig: Schaffen Sie es, die Funktion so zu schreiben, dass sie nur linear viele Schritte in der Länge
der Liste benötigt?

// Lösung mit Laufzeit quadratisch in der Länge von xs
let rec mirror (xs: Nats): Nats =

match xs with
| Nil -> Nil
| Cons (x, ys) -> concat (mirror ys) (Cons (x, Nil))

// Effizientere Lösung (lineare Laufzeit)
let mirror' (xs: Nats): Nats =

// Hilfsfunktion berechnet concat (mirror xs) zs
let rec mirrorConcat (xs: Nats) (zs: Nats): Nats =

match xs with
| Nil -> zs
| Cons (x, ys) -> mirrorConcat ys (Cons (x, zs))

mirrorConcat xs Nil

c) Schreiben Sie eine Funktion filter: (Nat -> Bool) -> Nats -> Nats, die ein Prädikat auf den natürli-
chen Zahlen (also eine Funktion, die eine natürliche Zahl nimmt und prüft, ob diese eine bestimmte
Bedingung erfüllt) und eine Liste von natürlichen Zahlen nimmt und und die Zahlen zurückgibt, die das
Prädikat erfüllen.

Beispiele:
filter p Nil = Nil

filter (fun n -> n%2=0) (Cons (2N, Cons (4N, Nil))) = Cons (2N, Cons (4N, Nil))

filter (fun n -> n%2=0) (Cons (1N, Cons (6N, Nil))) = Cons (6N, Nil)

filter (fun n -> n>3) ex = Cons (4N, (Cons (4N, Nil)))

let rec filter (p: Nat -> Bool) (xs: Nats): Nats =
match xs with
| Nil -> Nil
| Cons (x, ys) ->

if p x then
Cons (x, filter p ys)

else
filter p ys

8



d) Implementieren Sie die Funktion pascal: Nat -> Nats, die eine Zeile des Pascalschen Dreiecks berech-
net.

1

1 1

1 2
+

1

1 3
+

3
+

1

1 4
+

6
+

4
+

1
. . .

pascal 0 = Cons (1, Nil)

pascal 1 = Cons (1, Cons (1, Nil))

pascal 2 = Cons (1, Cons (2, Cons (1, Nil)))

pascal 3 = Cons (1,Cons(3,Cons(3,Cons(1,Nil))))

pascal 4 = Cons (1, Cons (4, Cons (6, Cons (4,
Cons (1, Nil)))))

Wie in der Grafik gezeigt, werden immer je zwei benachbarte Elemente der vorherigen Zeile addiert und
außen an den Rändern jeweils eine 1 hinzugefügt.

Tipp: Verwenden Sie das Peano-Entwurfsmuster und definieren Sie zusätzlich eine rekursive Hilfsfunk-
tion.

let rec pascal (level: Nat): Nats =
let rec step (xs: Nats): Nats =

match xs with
| Cons (_, Nil) -> Cons (1N, Nil)
| Cons (x, Cons(y, zs)) -> Cons (x+y, step (Cons (y, zs)))

if level = 0N then Cons (1N, Nil)
else Cons (1N, (step (pascal (level - 1N))))

9



Aufgabe 4 Dynamische und Statische Semantik
(Einreichaufgabe, 7 Punkte)

Motivation: In dieser Aufgabe sollen Sie die Semantikregeln rückwärts anwenden: Im ersten Teil ist die linke
Seite (der Ausdruck) unbekannt, aber die rechte Seite (der Wert) vorgegeben. Im zweiten Teil arbeiten Sie
wieder in der gewohnten Richtung, der Ausdruck ist nun bekannt und es ist der dazugehörige Typ gesucht.
Sie benötigen die Regeln der Vorlesungsfolien 109-110, 138-139, 143-144 und 182-183.

Finden Sie einen Ausdruck e, der gemäß den Regeln der Dynamischen Semantik aus der Vorlesung zu
folgendem Wert auswertet:

⟨{a 7→ 5}, x, a + x⟩

Geben Sie einen Beweisbaum mit den Regeln der Dynamischen Semantik an, der

∅ ⊢ e ⇓ ⟨{a 7→ 5}, x, a + x⟩

zeigt. Bestimmen Sie anschließend den Typ t Ihres Ausdrucks e und geben Sie einen Beweisbaum mit den
Regeln der Statischen Semantik an, der

∅ ⊢ e : t

zeigt.

Ausdruck e := let a = 5 in fun x → a + x Link zum Baum

∅ ⊢ 5 ⇓ 5
∅ ⊢ let a = 5 ⇓ {a 7→ 5} {a 7→ 5} ⊢ fun x → a + x ⇓ ⟨{a 7→ 5}, x, a + x⟩

∅ ⊢ let a = 5 in fun x → a + x ⇓ ⟨{a 7→ 5}, x, a + x⟩

Typ t := Nat→ Nat Link zum Baum

∅ ⊢ 5 : Nat
∅ ⊢ let a = 5 : {a 7→ Nat}

{a 7→ Nat, x 7→ Nat} ⊢ a : Nat {a 7→ Nat, x 7→ Nat} ⊢ x : Nat
{a 7→ Nat, x 7→ Nat} ⊢ a + x : Nat

{a 7→ Nat} ⊢ fun (x: Nat) → a + x : Nat→ Nat
∅ ⊢ let a = 5 in fun (x: Nat) → a + x : Nat→ Nat

Hinweis: Es sind auch andere Ausdrücke möglich, die 5 lässt sich beispielsweise durch 2 + 3 ersetzen,
dann werden die Bäume jedoch größer.

10

https://exclaim.cs.rptu.de/proof-tree-generator/#v1;K.!e)/SJ.Adt'z'y0-y-Y-JJHl$9bB$BH6w'0'o*$:AIKC6lAbaJ/ydA9sMYe0?A0ADKbhm=gDnzekD6(+D*M8Y/QaV$E0D'n+&7V@4!/p7'hk-Q-!0=/*JSAD$H/JM&A.g+!E$*E(!LH9+auZ6$Ma'r!E-G)JACnI7*S7POl0k?Im1=l*aa:1.NAY5-j2'K+AsjE*m-*0B--7!A!*/m2v$+,JTz:6Fs$'sJ*0B:?qY&6'Y7GaM(Lc9JM&2sZ.$S60$=$(d+E$A'f,dk1Vg!.P/N/;WG'B:?L'F-J$)E-d+MeqD$8S?HsnaJ'REa/JB*X(0,q;TFZs!M(i-ti9$CJ$IAvA0n,Mx!6*a'H,aB,bL;c_0!1=9'=cJ!J7Av.BBB!.d*Agx!ATA9s,w+i(--3aK4'!!
https://exclaim.cs.rptu.de/proof-tree-generator/#v1;K.!e)/SJ.Adt'z'y0-y-Y-JJHl$9bB$BH6w'0'o*$:AIKC6lAbaJ/ydA9sMYe0?A0ADKbhm=gDnzekD6(+D*M8Y/QaV$E0D'n+&7V@4!/p7'hk-Q$GAe,$H/JM&A.g+!E$*E(!LH6+auZ3Db!'r!E-G)IACnF7*S7MNkmb:Hlk0**a-!7Sa.+c!CF*ySbsj/ShF*&'v?cT!-HoKh6g*&B7eJ)bt+$IMSm,+'Ji+0T*G8!Fc0g(AN38!JtJ*QbvD(?E-'s'1j;@(!/3@/Ovv$1b:B5d0AD/KmsDT(!-VK*An=Qna/;Go7:c:!Ex!$/Ib'yLy,+=$Lf=ci?/m?J(:lq!J$3DMy!A_!9t$DsI.!J-v+N&!SwhYxadBa'm'-7;BB!uY;v7@ueCV)Am-/j$/$'zCVrIw+-*$I:,!Mvkdx+a-A6CAA)aA_KAqe11l(2jw8k*$He9lN;/YqE+=a1*j$6l13-6!!


Aufgabe 5 Statische Semantik von rekursiven Funktionen (Trainingsaufgabe)

Wir betrachten die rekursive Funktionsdefinition

let rec f (x: Bool): Bool = (if x then x else f (not x))

bezüglich der Signatur Σ := {not 7→ Bool→ Bool}. Geben Sie einen vollständigen Beweisbaum an.

Definiere aus Platzgründen Σ1 := {not 7→ Bool→ Bool, f 7→ Bool→ Bool, x 7→ Bool}.

Σ1 ⊢ x : Bool Σ1 ⊢ x : Bool
Σ1 ⊢ f : Bool→ Bool

Σ1 ⊢ not : Bool→ Bool Σ1 ⊢ x : Bool
Σ1 ⊢ not x : Bool

Σ1 ⊢ f (not x) : Bool
Σ1 ⊢ if x then x else f (not x) : Bool

Σ ⊢ let rec f (x: Bool): Bool = if x then x else f (not x) : {f 7→ Bool→ Bool}

11


	Datentypen (Präsenzaufgabe)
	Kalenderdaten (Einreichaufgabe, 7 Punkte)
	Listen natürlicher Zahlen (Einreichaufgabe, 8 Punkte)
	Dynamische und Statische Semantik (Einreichaufgabe, 7 Punkte)
	Statische Semantik von rekursiven Funktionen (Trainingsaufgabe)

