Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik
Alexander Dinges, M.Sc.

Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 4: Konzepte der Programmierung (WS 2025/26)

Klausuranmeldung Denken Sie daran, die Klausur und die Vorleistung im Priifungsamt anzumelden!

Aufgabe 1 Datentypen (Prasenzaufgabe)

Motivation: Um Programmieraufgaben im ExClaim-System testen zu konnen, miissen wir die darin ver-
wendeten Typdefinitionen vorgeben. In dieser Aufgabe sollen Sie (rekursive) Varianten und Records wie-
derholen und selbst entsprechende Typen definieren, um Sachverhalte zu modellieren. Sie kdnnen sich an
den Vorlesungsfolien 280 bis 372 sowie am Skript Kapitel 4.1 und 4.2 orientieren.

a) Varianten

1. Definieren Sie einen Variantentyp zur Modellierung von Tierarten, der die Ausprigungen Hund,
Katze und Maus annehmen kann.

Zusitzlich soll ein Variantentyp fiir Lebewesen definiert werden: Bei einem Lebewesen kann es
sich entweder um ein Tier einer der oben genannten Tierarten handeln, oder um ein Lebewesen,
das kein Tier ist.

type Tierart =
| Hund
| Katze
| Maus

type Lebewesen =
| KeinTier
| Tier of Tierart

2. Schreiben Sie eine Funktion eineMaus: Tierart -> Bool, die priift, ob es sich bei der iibergebenen
Tierart um eine Maus handelt.

let eineMaus (t: Tierart): Bool =
match t with
| Maus -> true
| _ -> false

3. Schreiben Sie eine Funktion eineKatze: Lebewesen -> Bool, die priift, ob es sich beim iibergenenen
Lebewesen um eine Katze handelt.

let eineKatze (l: Lebewesen): Bool =
match 1 with
| KeinTier -> false
| Tier t ->
match t with
| Katze -> true
| _ -> false

let eineKatze' (l: Lebewesen): Bool =
match 1 with
| Tier Katze -> true
| _ -> false

4. Schreiben Sie eine Funktion mindestensEinTier: Lebewesen -> Lebewesen -> Bool, die priift, ob es
sich bei mindestens einem der beiden Argumente um ein Tier handelt.

let mindestensEinTier (l1: Lebewesen) (1l2: Lebewesen): Bool =
match (11, 12) with
| (KeinTier, KeinTier) -> false
| _ -> true

b) Rekursive Varianten

1. Wiederholen Sie den Typ Nats fiir Listen natiirlicher Zahlen

type Nats =
| Nil
| Cons of Nat * Nats

2. Schreiben Sie eine Funktion findMax, welche die groBte Zahl in einer Liste natiirlicher Zahlen
zuriickgibt.

let rec findMax (ns: Nats): Nat =
match ns with
| Nil -> ON
| Cons (x, xs) -> max x (findMax xs)

3. Schreiben Sie eine Funktion plusOne, die alle Zahlen in der Liste um eins erhoht.

let rec plusOne (ns: Nats): Nats =
match ns with
| Nil -> Nil
| Cons (x, xs) -> Cons (x + 1, plusOne xs)

¢) Records

1. Schreiben Sie einen Record-Typ, um Eigenschaften von Biichern zu speichern. Gesichert werden
soll der Titel, der Name der Autorin/des Autors, das Verdftfentlichungsjahr sowie die ISBN.

Verwenden Sie den Record, um das Buch ,,Harry Potter and the Philosopher’s Stone* von ,,J. K.
Rowling* aus dem Jahr 1997 mit der ISBN 9780747532743 zu erfassen.

type Buch = {titel: String ; autor: String ; jahr: Nat ; isbn: Nat}
let harry = { titel="Harry Potter and the Philosopher's Stone"
; autor="J]. K. Rowling" ; jahr = 1997N ; isbn = 9780747532743N }

2. Wo liegt der Vorteil gegeniiber einem entsprechenden Quadrupel?

%

type Buch' = String String * Nat * Nat

Hier miissen wir uns merken, welche Information an welcher Position steht. Durch die Angabe
von Labels ist die Reihenfolge bei Records egal. Aussagekriftige Labels schaffen zusitzliche
Klarheit beim Lesen und Schreiben des Codes.

Aufgabe 2 Kalenderdaten (Einreichaufgabe, 7 Punkte)

Motivation: In dieser Aufgabe sollen Sie sich mit Variantentypen und Records beschéftigen. Sie konnen
sich an den Vorlesungsfolien 280 bis 326 sowie am Skript Kapitel 4.1 und 4.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Dates. fs aus der Vorlage Aufgabe-4-2.zip.

Wir reprisentieren ein Kalenderdatum durch folgende Datentypen:

type Weekday = | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
type Date = { year: Nat; month: Nat; day: Nat; weekday: Weekday }

Ein Datum besteht also aus je drei Zahlen fiir das Jahr, den Monat und den Tag, sowie dem Wochentag.

Hinweis: Einige Teilaufgaben konnen Sie mit Hilfe der Funktionen aus vorherigen Teilaufgaben 16sen.

a) Schreiben Sie eine Funktion nextWeekday: Weekday -> Weekday, die einen Wochentag nimmt und den
nichsten Wochentag zuriickgibt.

Beispiel:
nextWeekday Monday = Tuesday

let nextWeekday (d: Weekday): Weekday =
match d with
| Monday -> Tuesday
| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday

b) Schreiben Sie eine Funktion isLeapYear: Nat -> Bool, die eine natiirliche Zahl nimmt, die eine Jahres-
zahl darstellen soll, und priift, ob diese ein Schaltjahr! ist.
Beispiele:
isLeapYear 2025 = false

isLeapYear 2024 = true

let isLeapYear (y: Nat): Bool =
(y % 4N = ON) && (y % 100N <> ON || y % 400N = ON)

1https://de.wikipedia.org/wiki/Schaltjahr#Gregorianischer_Kalender

https://de.wikipedia.org/wiki/Schaltjahr#Gregorianischer_Kalender

¢) Schreiben Sie eine Funktion daysInMonth: Nat -> Nat -> Nat, die eine Jahreszahl sowie eine Monatszahl
nimmmt und zuriickgibt, wie viele Tage es im Monat gibt. Ist der Monatswert nicht sinnvoll, ist es egal,
was zuriickgegeben wird.

Beispiel:
daysInMonth 2023 2 = 28
daysInMonth 2024 2 = 29

daysInMonth 2025 11 = 30

let daysInMonth (year: Nat) (month: Nat): Nat =
if month = 2N then if isLeapYear year then 29N else 28N
elif month = 4N || month = 6N || month = 9N || month = 11N then 30N
else 31N

d) Schreiben Sie eine Funktion nextDate: Date -> Date, die ein Datum nimmt und das nichste Datum
zuriickgibt. Sie miissen nicht priifen, ob die Eingabe ein giiltiges Datum ist.

Beispiel:

nextDate { year = 2025N; month = 11N; day
{ year = 2025N; month = 11IN; day = 19N; weekday = Wednesday }

nextDate { year = 2025N; month = 12N; day = 31N; weekday = Wednesday } =
{ year = 2026N; month = 1IN; day = 1IN; weekday = Thursday }

18N; weekday = Tuesday }

let nextDate (d: Date): Date =
let nextDay = nextWeekday d.weekday
let nextDayNum = d.day + 1IN
if nextDayNum > daysInMonth d.year d.month then
if d.month = 12N then
{ year = d.year + 1N; month = 1IN; day = 1IN; weekday = nextDay }
else
{ year = d.year; month = d.month + 1N; day = 1N; weekday = nextDay }
else
{ year = d.year; month = d.month; day = nextDayNum; weekday = nextDay }

e) Schreiben Sie eine Funktion nextDateN: Date -> Nat -> Date, die ein Datum und eine natiirliche Zahl
nimmt und das Datum zuriickgibt, das nach der angegebenen Anzahl von Tagen folgt. Sie miissen nicht
priifen, ob die Eingabe ein giiltiges Datum ist.

Tipp: Nutzen Sie das Peano-Entwurfsmuster und Ihre Funktion aus der vorherigen Teilaufgabe.

let rec nextDateN (d: Date) (n: Nat): Date =
if n = ON then d
else nextDateN (nextDate d) (n - 1N)

f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion validateWeekday: Date -> Bool option, die ein
Datum nimmt und priift, ob der Wochentag mit dem Datum iibereinstimmt. Sie soll dariiber hinaus nichts
priifen.

Beispiel:
validateWeekday { year = 2025N; month = 11N; day = 18N; weekday = Tuesday } = true

validateWeekday { year = 2025N; month = 11IN; day = 18N; weekday = Wednesday } = false

Wir verwenden die Formel von Wikipedia:

let rec numberToWeekday (x: Nat): Weekday =
if x = ON then Sunday

elif x = 1IN then Monday
elif x = 2N then Tuesday
elif x = 3N then Wednesday
elif x = 4N then Thursday
elif x = 5N then Friday
elif x = 6N then Saturday

else numberToWeekday (x % 7N)

let monthFactor (d: Date): Nat =
let m = d.month

if m = 3N then 2N
elif m = 4N then 5N
elif m = 5N then ON
elif m = 6N then 3N
elif m = 7N then 5N
elif m = 8N then 1IN
elif m = 9N then 4N
elif m = 10N then 6N
elif m = 11N then 2N
elif m = 12N then 4N
elif m = 1IN then ON
elif m = 2N then 3N
else ON

let firstDigitsOfYear (d: Date): Nat =
if d.month <= 2N then (d.year - 1N)/100N else d.year/100N

let lastDigitsOfYear (d: Date): Nat =
if d.month <= 2N then (d.year - 1IN)%100N else d.year%100N

let validateWeekday (d: Date): Bool =
let y = lastDigitsOfYear d
let ¢ = firstDigitsOfYear d
let m = monthFactor d
let actualWdAsNumber = d.day + m + y + y / 4N + ¢ / 4N - 2N*c
let actualWeekday = numberToWeekday (actualWdAsNumber % 7N)
actualWeekday = d.weekday

https://de.wikipedia.org/wiki/Wochentagsberechnung#Formel

Aufgabe 3 Listen natlirlicher Zahlen (Einreichaufgabe, 8 Punkte)

Motivation: In dieser Aufgabe sollen Sie sich mit rekursiven Variantentypen beschiftigen. Sie konnen sich
an den Vorlesungsfolien 332 bis 351 sowie am Skript Kapitel 4.2.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Nats. fs aus der Vorlage Aufgabe-4-3.zip.

Bevor wir nidchste Woche den in F# eingebauten Typ fiir Listen kennenlernen, arbeiten wir diese Woche
zunéchst mit einem selbst definierten Typ fiir Listen natiirlicher Zahlen. Alles was wir dazu brauchen, sind
rekursive Varianten und Tupel. Sie kennen den Typ bereits aus der Vorlesung:

type Nats = | Nil | Cons of Nat * Nats

Hinweis: Wenn Sie im Internet nach Teilen der Aufgabenstellung suchen, werden Sie vielleicht auf das List
F#-Modul stofsen, das allerdings mit dem in F# eingebauten Typ fiir Listen arbeitet. Dieses Modul werden
wir auf einem spdteren Ubungsblatt vorstellen, hier diirfen Sie es in Ihrer Losung jedoch nicht verwenden.

Wir verwenden bei einigen Teilaufgaben die Beispielliste:

let ex = Cons (2N, Cons (4N, Cons (3N, Cons (4N, Cons(2N, Cons (1IN, Nil))))))

a) Schreiben Sie eine Funktion concat: Nats -> Nats -> Nats, die zwei Listen natiirlicher Zahlen xs und
ys nimmt und deren Konkatenation berechnet, also die Liste in der zuerst alle Zahlen aus xs und dann
die Zahlen aus ys kommen.

Beispiele:

concat Nil ex = ex

concat ex Nil = ex

concat (Cons (1IN, Nil)) (Cons (2N, Nil)) = Cons (1N,Cons (2N,Nil))

let rec concat (xs: Nats) (ys: Nats): Nats =
match xs with
| Nil -> ys
| Cons (x, zs) -> Cons (x, concat zs ys)

b) Schreiben Sie eine Funktion mirror: Nats -> Nats, die eine Liste natiirlicher Zahlen nimmt und die

gespiegelte Liste berechnet, also eine Liste in der die Zahlen in umgekehrter Reihenfolge enthalten sind.
Beispiele:
mirror Nil = Nil

mirror ex = Cons (1N,Cons (2N,Cons (4N,Cons (3N,Cons (4N,Cons (2N,Nil))))))

Freiwillig: Schaffen Sie es, die Funktion so zu schreiben, dass sie nur linear viele Schritte in der Lange
der Liste benotigt?

// Losung mit Laufzeit quadratisch in der Lange von Xxs
let rec mirror (xs: Nats): Nats =

match xs with

| Nil -> Nil

| Cons (x, ys) -> concat (mirror ys) (Cons (x, Nil))

// Effizientere Losung (lineare Laufzeit)
let mirror' (xs: Nats): Nats =
// Hilfsfunktion berechnet concat (mirror xs) zs
let rec mirrorConcat (xs: Nats) (zs: Nats): Nats =
match xs with
| Nil -> zs
| Cons (x, ys) -> mirrorConcat ys (Cons (x, zs))
mirrorConcat xs Nil

Schreiben Sie eine Funktion filter: (Nat -> Bool) -> Nats -> Nats, die ein Pridikat auf den natiirli-
chen Zahlen (also eine Funktion, die eine natiirliche Zahl nimmt und priift, ob diese eine bestimmte

Bedingung erfiillt) und eine Liste von natiirlichen Zahlen nimmt und und die Zahlen zuriickgibt, die das
Pridikat erfiillen.

Beispiele:

filter p Nil = Nil

filter (fun n -> n%2=0) (Cons (2N, Cons (4N, Nil))) = Cons (2N, Cons (4N, Nil))
filter (fun n -> n%2=0) (Cons (1IN, Cons (6N, Nil))) = Cons (6N, Nil)

filter (fun n -> n>3) ex = Cons (4N, (Cons (4N, Nil)))

let rec filter (p: Nat -> Bool) (xs: Nats): Nats =
match xs with
| Nil -> Nil
| Cons (x, ys) ->
if p x then
Cons (x, filter p ys)
else
filter p ys

d) Implementieren Sie die Funktion pascal: Nat -> Nats, die eine Zeile des Pascalschen Dreiecks berech-

net.
1 pascal ® = Cons (1, Nil)
1 1 pascal 1 = Cons (1, Cons (1, Nil))
1 2 1 pascal 2 = Cons (1, Cons (2, Cons (1, Nil)))
1 3 3 1 pascal 3 = Cons (1,Cons(3,Cons(3,Cons(1,Nil))))
1 4 6 4 1 | pascal 4 = Cons (1, Cons (4, Cons (6, Cons (4,
Cons (1, Nil))>)))

Wie in der Grafik gezeigt, werden immer je zwei benachbarte Elemente der vorherigen Zeile addiert und
auflen an den Rindern jeweils eine 1 hinzugefiigt.

Tipp: Verwenden Sie das Peano-Entwurfsmuster und definieren Sie zusitzlich eine rekursive Hilfsfunk-

tion.

Nats
Nats

let rec pascal (level:
let rec step (xs:
match xs with

| Cons (_, Nil)

| Cons (x, Cons(y, zs))

if level = ON then Cons (IN,
else Cons (1IN,

Nat):
Nats):

-> Cons (1N,
-> Cons (x+y,
Nil)

(step (pascal (level - 1N))))

Nil)

step (Cons (y, zs)))

Aufgabe 4 Dynamische und Statische Semantik
(Einreichaufgabe, 7 Punkte)

Motivation: In dieser Aufgabe sollen Sie die Semantikregeln riickwérts anwenden: Im ersten Teil ist die linke
Seite (der Ausdruck) unbekannt, aber die rechte Seite (der Wert) vorgegeben. Im zweiten Teil arbeiten Sie
wieder in der gewohnten Richtung, der Ausdruck ist nun bekannt und es ist der dazugehorige Typ gesucht.
Sie benotigen die Regeln der Vorlesungsfolien 109-110, 138-139, 143-144 und 182-183.

Finden Sie einen Ausdruck e, der gemif3 den Regeln der Dynamischen Semantik aus der Vorlesung zu
folgendem Wert auswertet:
{{fa— 5}, x,a+ x)

Geben Sie einen Beweisbaum mit den Regeln der Dynamischen Semantik an, der
Orel a5}, x,a+x)

zeigt. Bestimmen Sie anschliefend den Typ ¢ Ihres Ausdrucks e und geben Sie einen Beweisbaum mit den
Regeln der Statischen Semantik an, der
Ore:t

zeigt.
Ausdruck e :=1et a = 5 in fun x > a + X Link zum Baum
Or5y5

Orlet a=5]{ar 5} fapS5irfun x - a + x| {a~ 5L %xa + X)
Orlet a =5 in fun x —» a + x| {{a— 5}, x,a + X)

Typ t := Nat — Nat Link zum Baum

{a — Nat, x — Nat} a : Nat {a — Nat, x — Nat} + x : Nat
O+ 5: Nat {a+ Nat,x — Nat} ra + x: Nat
Orlet a = 5:{a+ Nat} {a+ Nat} - fun (x: Nat) — a + x:Nat — Nat
Orlet a =5 in fun (x: Nat) — a + x:Nat — Nat

Hinweis: Es sind auch andere Ausdriicke moglich, die 5 lisst sich beispielsweise durch 2 + 3 ersetzen,
dann werden die Baume jedoch grofer.

10

https://exclaim.cs.rptu.de/proof-tree-generator/#v1;K.!e)/SJ.Adt'z'y0-y-Y-JJHl$9bB$BH6w'0'o*$:AIKC6lAbaJ/ydA9sMYe0?A0ADKbhm=gDnzekD6(+D*M8Y/QaV$E0D'n+&7V@4!/p7'hk-Q-!0=/*JSAD$H/JM&A.g+!E$*E(!LH9+auZ6$Ma'r!E-G)JACnI7*S7POl0k?Im1=l*aa:1.NAY5-j2'K+AsjE*m-*0B--7!A!*/m2v$+,JTz:6Fs$'sJ*0B:?qY&6'Y7GaM(Lc9JM&2sZ.$S60$=$(d+E$A'f,dk1Vg!.P/N/;WG'B:?L'F-J$)E-d+MeqD$8S?HsnaJ'REa/JB*X(0,q;TFZs!M(i-ti9CJIAvA0n,Mx!6*a'H,aB,bL;c_0!1=9'=cJ!J7Av.BBB!.d*Agx!ATA9s,w+i(--3aK4'!!
https://exclaim.cs.rptu.de/proof-tree-generator/#v1;K.!e)/SJ.Adt'z'y0-y-Y-JJHl$9bB$BH6w'0'o*$:AIKC6lAbaJ/ydA9sMYe0?A0ADKbhm=gDnzekD6(+D*M8Y/QaV$E0D'n+&7V@4!/p7'hk-Q$GAe,$H/JM&A.g+!E$*E(!LH6+auZ3Db!'r!E-G)IACnF7*S7MNkmb:Hlk0**a-!7Sa.+c!CF*ySbsj/ShF*&'v?cT!-HoKh6g*&B7eJ)bt+$IMSm,+'Ji+0T*G8!Fc0g(AN38!JtJ*QbvD(?E-'s'1j;@(!/3@/Ovv$1b:B5d0AD/KmsDT(!-VK*An=Qna/;Go7:c:!Ex!$/Ib'yLy,+=$Lf=ci?/m?J(:lq!J$3DMy!A_!9t$DsI.!J-v+N&!SwhYxadBa'm'-7;BB!uY;v7@ueCV)Am-/j$/$'zCVrIw+-*$I:,!Mvkdx+a-A6CAA)aA_KAqe11l(2jw8k*$He9lN;/YqE+=a1*j$6l13-6!!

I

Aufgabe 5 Statische Semantik von rekursiven Funktionen (Trainingsaufgabe)

Wir betrachten die rekursive Funktionsdefinition
let rec £ (x: Bool): Bool = (if x then x else f (not x))

beziiglich der Signatur X := {not — Bool — Bool}. Geben Sie einen vollstindigen Beweisbaum an.

Definiere aus Platzgriinden X := {not — Bool — Bool, £ — Bool — Bool, x — Bool}.

21 F not : Bool — Bool 21 +x:Bool

21 + £ : Bool — Bool 21 Fnot x: Bool
21+ x : Bool 21+ x : Bool 21+ £ (not x) : Bool
21 +if x then x else f (not x) : Bool
2Flet rec £ (x: Bool): Bool = if x then x else f (not x) : {f~ Bool — Bool}

	Datentypen (Präsenzaufgabe)
	Kalenderdaten (Einreichaufgabe, 7 Punkte)
	Listen natürlicher Zahlen (Einreichaufgabe, 8 Punkte)
	Dynamische und Statische Semantik (Einreichaufgabe, 7 Punkte)
	Statische Semantik von rekursiven Funktionen (Trainingsaufgabe)

