
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 5: Konzepte der Programmierung (WS 2025/26)

Listen in F# Auf dem letzten Übungsblatt haben wir bereits den Typ Nats für Listen natürlicher Zahlen
verwendet. In der Vorlesung haben wir nun auch parametrisierte Typen kennengelernt. Unter anderem wurde
der folgende Typ für Listen definiert: type List<'a> = | Nil | Cons of 'a * List<'a>

Diese Typdefinition kommt mit den bislang bekannten Sprachelementen aus: Rekursive Varianten und Paare.
Wir können diese Typdefinition auch genauso in F# verwenden und z.B. die Liste der Zahlen 1N und 2N als
List<Nat> durch Cons (1N, Cons (2N, Nil)) darstellen. In F# gibt es jedoch auch einen vordefinierten Typ
für Listen, für den es drei Notationen gibt: List<'a>, list<'a> sowie List<'a> (unglücklicherweise schreibt
sich der in F# eingebaute Typ List<'a> gleich wie der Listentyp aus der Vorlesung, jedoch hat der F# Typ
die Konstruktoren [] und ::). Dieser Typ ist nicht kompatibel mit dem selbst definierten Typ List<'a> aus
der Vorlesung. Es ist daher wichtig zu wissen, welchen Typ man gerade verwendet. Die Unterschiede finden
Sie auf Vorlesungsfolie 402.

In den Übungen verwenden wir überwiegend den in F# vordefinierten Typ für Listen. Dies hat den Vor-
teil, dass wir eine kürzere Notation für die Darstellung der Listen nutzen können: [1N; 2N; 3N] statt
Cons (1N, Cons (2N, Cons (3N, Nil))). Außerdem werden wir einige vordefinierte Funktionen (sogenannte
Bibliotheksfunktionen) kennenlernen, die auch nur mit dem vordefinierten Listen-Typ funktionieren.

Typparameter Einschränkungen in F# In der Vorlesung haben wir polymorphe Funktionen kennen-
gelernt. Der Typ enthält hierbei einen Typparameter, sodass die Funktion für verschiedene Typen nutzbar
wird. Oft ist man jedoch nicht ganz frei in der Wahl des Typs: Wenn Elemente des Typs miteinander ver-
glichen werden (=, <, <=, usw.), dann muss der Typ diese Vergleichsoperation unterstützen. Eine polymor-
phe contains Funktion, die überprüft ob ein gegebener Wert vom Typ 'a in einer Liste vom Typ List<'a>
enthalten ist, setzt voraus, dass der Typ 'a die Gleichheit unterstützt. Die meisten Typen unterstützen so-
wohl Gleichheit als auch Ordnungsvergleiche; Strings und Listen sind beispielweise lexikografisch geord-
net. Es gibt aber auch Typen, die diese Vergleichsoperationen nicht unterstützen. Das sind insbesondere die
Funktionstypen. Der Ausdruck (fun (x: Nat) -> x + x) = (fun (x: Nat) -> 2N * x) ist also nicht wohlge-
typt, da der Typ Nat -> Nat die Gleichheit nicht unterstützt. Der Typparameter für polymorphe Funktionen
kann wie folgt eingeschränkt werden: let contains<'a when 'a : equality> (x: 'a) (xs: List<'a>): Bool
= Dabei ist equality die Einschränkung, dass die Gleichheit (=) unterstützt werden muss. Für Ord-

nungsvergleiche (<, <=, min, . . .) heißt die Einschränkung comparison und beinhaltet automatisch auch die
Gleichheit. Sie brauchen sich nicht weiter damit zu befassen, jedoch werden manche Vorlagen derartige
Typeinschränkungen enthalten. Diese müssen Sie so in der Vorlage stehen lassen, da der Code ansonsten
nicht mehr kompilieren wird.

Aufrufen von polymorphen Funktionen in F# Wie auf Vorlesungsfolie 398 beschrieben, kann der
Typparameter beim Aufrufen polymorpher Funktionen meist weggelassen werden. Allerdings gilt dies nicht
immer, wenn der Typparameter eingeschränkt ist (siehe vorheriger Abschnitt). Die vordefinierte Funktion
max<'a when 'a : comparison>: 'a -> 'a -> 'a gibt das größere der beiden Argumente zurück. Wir können
max<List<Nat>> [5N; 6N] [7N; 1N] ohne Typparameter aufrufen (max [5N; 6N] [7N; 1N]), da F# den Typpa-
rameter List<Nat> aus den Argumenten bestimmen kann. Sind die beiden Eingabelisten jedoch leer, dann
ist diese Verkürzung nicht möglich: max [] [] gibt einen Fehler, während max<List<Nat>> [] [] funktio-
niert. Wenn Sie also den Fehler FS0030: Value restriction erhalten, müssen Sie beim Funktionsaufruf den
Typparameter explizit angeben.

Vorbereitung auf die Klausur Wir legen Ihnen ans Herz, mit der Klausurvorbereitung rechtzeitig zu
beginnen. Sie können sich mit Hilfe der alten GdP Klausuren im KAI System1 einen Eindruck vom Aufbau
der Klausur verschaffen.

Als Hilfsmittel für die Klausuren sind zwei beidseitig handschriftlich beschriebene DIN A4 Blätter zugelas-
sen. Beginnen Sie möglichst schon jetzt damit diese vorzubereiten. Schreiben Sie Dinge auf, die Sie nicht
auswendig lernen möchten, aber dennoch hilfreich bei der Bearbeitung von Klausuraufgaben sein könnten.
Dies sind zum Beispiel die Regeln der statischen und dynamischen Semantik. Ansonsten könnten noch die
Parameter- und Rückgabetypen einiger nützlicher Bibliotheksfunktionen, die Sie zum Lösen der Übungs-
aufgaben bereits benutzt haben, hilfreich sein. Beachten Sie, dass bereits das Erstellen dieser “Spickzettel”
einen Lernprozess darstellt. Sie sollten sich also Ihre eigenen Blätter konzipieren und nicht von Kommili-
toninnen und Kommilitonen abschreiben.

Aufgabe 1 Parametrische Listen (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den in F# eingebauten parametrischen Listen vertraut
machen. Sie können sich an den Vorlesungsfolien 378 bis 403 sowie am Skript Kapitel 4.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Lists.fs aus der Vorlage Aufgabe-5-1.zip.

Wir betrachten unter anderem einige aus Übungsblatt 4, Aufgabe 1 und 3 bekannte Funktionen noch einmal
und verallgemeinern diese. Dazu werden die in F# eingebauten parametrischen Listen verwendet. Bitte
beachten Sie die Hinweise zu Listen in F# auf der ersten Seite.

Hinweis: Verwenden Sie in Ihrer Lösung nicht das List-Modul aus der Standardbibliothek.

Wir verwenden bei einigen Teilaufgaben folgende Beispielliste:

let ex = [2N; 4N; 3N; 4N; 2N; 1N]

a) Schreiben Sie eine Funktion plusOne: List<Nat> -> List<Nat>, die eine Liste natürlicher Zahlen nimmt
und zu jeder Zahl in der Liste die Zahl 1 addiert. Vergleichen Sie mit der gleichnamigen Funktion von
Übungsblatt 4, Aufgabe 1.

Beispiele:
plusOne [] = []

plusOne ex = [3N; 5N; 4N; 5N; 3N; 2N]

let rec plusOne (xs: List<Nat>): List<Nat> =
match xs with
| [] -> []
| x::ys -> (x + 1N)::(plusOne ys)

Gegenüber Aufgabe 1 von Übungsblatt 4 müssen nur die Konstruktoren ausgetauscht werden. Statt
Nil haben wir jetzt [] und anstelle von Cons (x, xs) (Präfix) schreiben wir x::xs (Infix).

1https://kai.informatik.uni-kl.de/, Abruf nur aus dem Uni-Netz bzw. VPN https://rz.rptu.de/vpn/.

2

https://kai.informatik.uni-kl.de/
https://rz.rptu.de/vpn/

b) Schreiben Sie eine Funktion filter<'a>: ('a -> Bool) -> List<'a> -> List<'a>, die eine Funktion p
und eine Liste xs nimmt und die Liste der Elemente aus xs zurückgibt, für die p true zurückgibt.

Beispiele:
filter (fun x -> x > 3N) [] = []

filter (fun x -> x > 3N) ex = [4N; 4N]

filter (fun x -> x <= 3N) ex = [2N; 3N; 2N; 1N]

let rec filter<'a> (p: 'a -> Bool) (xs: List<'a>): List<'a> =
match xs with
| [] -> []
| x::xs ->

if p x
then x::(filter p xs)
else filter p xs

c) Schreiben Sie eine Funktion concat<'a>: List<'a> -> List<'a> -> List<'a>, die zwei parametrische
Listen xs und ys nimmt und deren Konkatenation berechnet, also die Liste in der zuerst alle Elemente
aus xs und dann die Elemente aus ys kommen. Verwenden Sie nicht den in F# eingebauten Konkatena-
tionsoperator @.

Beispiele:
concat [] ex = ex

concat ex [] = ex

concat [1N] [2N] = [1N; 2N]

let rec concat<'a> (xs: List<'a>) (ys: List<'a>): List<'a> =
match xs with
| [] -> ys
| x::zs -> x::(concat zs ys)

d) Schreiben Sie eine Funktion mirror<'a>: List<'a> -> List<'a>, die eine Liste nimmt und die gespiegel-
te Liste berechnet, also eine Liste in der die Elemente in umgekehrter Reihenfolge enthalten sind.

Beispiele:
mirror [] = []

mirror ex = [1N; 2N; 4N; 3N; 4N; 2N]

// Lösung mit Laufzeit quadratisch in der Länge von xs
let rec mirror<'a> (xs: List<'a>): List<'a> =

match xs with
| [] -> []
| x::ys -> concat (mirror ys) [x]

// Effizientere Lösung (lineare Laufzeit)
let mirror'<'a> (xs: List<'a>): List<'a> =

// Hilfsfunktion berechnet concat (mirror xs) zs
let rec mirrorConcat (xs: List<'a>) (zs: List<'a>): List<'a> =

match xs with
| [] -> zs
| x::ys -> mirrorConcat ys (x::zs)

mirrorConcat xs []

3

e) Schreiben Sie eine Funktion sum: List<Nat> -> Nat, die eine Liste natürlicher Zahlen nimmt und die
Summe der Zahlen zurückgibt.

Beispiele:

sum [] = 0N sum ex = 16N

let rec sum (xs: List<Nat>): Nat =
match xs with
| [] -> 0N
| x::ys -> x + sum ys

4

Aufgabe 2 Warteschlangen (Einreichaufgabe, 12 Punkte)

Motivation: In dieser Aufgabe sollen Sie das Programmieren mit Records und parametrisierten Typen ein-
üben. Sie können sich an den Vorlesungsfolien 280 bis 304 und 378 bis 403 sowie am Skript Kapitel 4.1
und 4.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Queue.fs aus der Vorlage Aufgabe-5-2.zip.

Eine Warteschlange (engl. queue) ist eine Datenstruktur, welche eine Sammlung von Elementen verwaltet
und es in möglichst effizienter Weise erlaubt, sowohl Elemente ans Ende anzufügen als auch vom Anfang
zu entfernen.

Würden wir eine einfache Liste als Warteschlange verwenden, müssten wir für eine der genannten Ope-
rationen ganz durch die Liste laufen. Um ein besseres Laufzeitverhalten zu erzielen, modellieren wir in
dieser Aufgabe Warteschlangen mit Hilfe zweier Listen. Dabei repräsentiert die erste Liste die Vorderseite
der Warteschlange, ihr erstes Element steht ganz vorne in der Warteschlange. Die zweite Liste repräsentiert
das Ende der Warteschlange in umgekehrter Reihenfolge, ihr erstes Element korrespondiert also zum letz-
ten Element der Warteschlange. Die gesamte Warteschlange erhält man, wenn man beide Listen aneinander
hängt und eine dabei spiegelt.

Die Warteschlange selbst wird durch den Typ DEQ<'a> (für engl. double ended queue) modelliert.

type DEQ<'a> = // Die Warteschlange
{ frontLength: Nat
front: List<'a>
rearLength: Nat
rear: List<'a>

}

Wie Sie sehen, merken wir uns zusätzlich die Längen beider Listen. Wir legen fest, dass die hintere Liste
nie mehr Elemente enthalten darf, als die vordere Liste. Wäre dies beim Anfügen eines neuen Elements
der Fall, so hängen wir die Elemente der hinteren Liste in umgekehrter Reihenfolge an das Ende der vorderen
Liste an. Dadurch folgt, dass die vordere Liste nur leer ist, wenn auch die hintere Liste leer ist.

Hinweis: Beachten Sie die Hinweise auf der ersten Seite.

Hinweis: Wenn Sie möchten, können Sie in Ihrer Lösung das List-Modul aus der Standardbibliothek ver-
wenden.

a) Schreiben Sie eine Funktion isEmpty<'a>: DEQ<'a> -> Bool, die eine Warteschlange als Argument er-
wartet und zurückgibt, ob die Warteschlange leer ist oder nicht.

let isEmpty<'a> (q: DEQ<'a>): Bool =
q.frontLength = 0N

Aufgrund der im Aufgabentext genannten Invariante genügt es zu prüfen, ob die vordere Liste leer
ist. Dies ist der Fall, wenn diese die Länge 0N hat. Wir können alternativ mit Hilfe von match eine
entsprechende Fallunterscheidung der Liste selbst durchführen. Wenn wir versuchen mit q.front = []
zu prüfen, ob die Liste leer ist, erhalten wir die Fehlermeldung FS0001: Einem Typparameter fehlt die
Einschränkung "when 'a : equality". Die Prüfung auf Gleichheit ist nur möglich, wenn dies explizit

für den Typparameter gefordert wird (s. Seite 1).

b) Schreiben Sie eine Funktion repair<'a>: DEQ<'a> -> DEQ<'a>, die prüft, ob die Warteschlange die Inva-
riante erfüllt. Ist dies der Fall, wird die Warteschlange unverändert zurückgegeben. Andernfalls wird die
Invariante hergestellt und die resultierende Warteschlange zurückgegeben.

Hinweis: Sie müssen nicht extra die Längen der Listen mit frontLength und rearLength abgleichen (in-
dem Sie z.B. q.front.Length verwenden). Stattdessen werden die Längen frontLength und rearLength in
jeder manipulierenden Operation so angepasst, dass sie die Längen der Listen korrekt angeben.

5

let rec repair<'a> (q: DEQ<'a>): DEQ<'a> =
if q.rearLength <= q.frontLength then

q
else

{ frontLength = q.frontLength + q.rearLength
; front = q.front @ List.rev q.rear
; rearLength = 0N
; rear = []}

Wenn die Invariante erfüllt ist (die hintere Liste ist kürzer oder gleich lang wie die vordere Liste),
wird die Warteschlange unverändert zurückgegeben. Ist die Invariante verletzt, so wird die hintere
Liste in umgekehrter Reihenfolge an die vordere Liste angehängt. Die Längen werden entsprechend
angepasst.

c) Schreiben Sie eine Funktion enqueue<'a>: 'a -> DEQ<'a> -> DEQ<'a>, welche ein Element x sowie eine
Warteschlange q nimmt. Das Element x soll am Ende der Warteschlange q eingefügt und die resultierende
Warteschlange als Ergebnis zurückgegeben werden.

Hinweis: Verwenden Sie die repair Funktion.

let rec enqueue<'a> (x: 'a) (q: DEQ<'a>): DEQ<'a> =
repair { q with rearLength = q.rearLength + 1N ; rear = x::q.rear}

Da sich das letzte Element der Warteschlange ganz vorne in der rear Liste befindet, können wir x
einfach dort anfügen. Die Länge der hinteren Liste wird entsprechend um 1 erhöht. Die Schreibweise
{q with ...} erlaubt uns, ein neues Record zu konstruieren, welches standardmäßig mit den Inhalten
aus q befüllt wird, aber an den in ... genannten Feldern geändert wird (damit sparen wir uns etwas
Schreibarbeit). Zu guter Letzt verwenden wir repair, um die Einhaltung der Invariante sicherzustellen.

d) Schreiben Sie eine Funktion dequeue<'a>: DEQ<'a> -> Option<'a * DEQ<'a>>, die das vorderste Element
der Warteschlange entnimmt. Zurückgegeben wird ein Paar bestehend aus diesem vordersten Element
sowie der restlichen Warteschlange. Wenn die Warteschlange leer ist gibt es kein vorderstes Element;
daher kommt der Option-Typ zum Einsatz, sodass dann None zurückgegeben werden kann.

Hinweis: Sie haben den Optionstyp Option<'a> in der Vorlesung auf Folie 398 bzw. im Skript auf Seite
135 kennengelernt. Tatsächlich ist dieser Typ genau so in F# bereits eingebaut.

let dequeue<'a> (q: DEQ<'a>): Option<'a * DEQ<'a>> =
match q.front with
| [] -> None
| y::ys -> Some (

y,
repair {q with frontLength = q.frontLength - 1N; front = ys}

)

Aufgrund der Invariante genügt es, die vordere Liste zu analysieren. Ist diese leer, so gibt die Funktion
None zurück. Ansonsten verwenden wir wieder die Idee aus der vorherigen Teilaufgabe: Das vorderste
Element wird entfernt, die Länge entsprechend angepasst und schließlich wird mit repair die Einhal-
tung der Invariante sichergestellt.

6

Aufgabe 3 Ausdrücke vereinfachen (Einreichaufgabe, 3 Punkte)

Motivation: Wir haben in den Klausuren die Erfahrung gemacht, dass Studierende häufig unnötig komplexe
Ausdrücke schreiben. Einerseits vermindert ein solch komplexer Ausdruck die Lesbarkeit, andererseits kos-
tet er wertvolle Zeit beim Aufschreiben. Daher wollen wir zu diesem frühen Zeitpunkt schon einüben, wie
man gängige Ausdrücke möglichst kurz darstellen kann.

Schreiben Sie Ihre Lösungen in die Datei Simplify.fs aus der Vorlage Aufgabe-5-3.zip.

Geben Sie für die folgenden Ausdrücke jeweils einen vereinfachten (also möglichst kurzen) Ausdruck an,
der auf jeden Fall zu demselben Wert wie der ursprüngliche Ausdruck auswertet.

Beispiel: false = (a = true) lässt sich vereinfachen zu not a.

a) if a then b else false

a && b

b) if (a = true) then 2N else 3N

if a then 2N else 3N

c) if (x <> 0N) then false else true

x = 0N

7

Aufgabe 4 Stufenproblem (Einreichaufgabe, 12 Punkte)

Motivation: In dieser Aufgabe sollen Sie mit den in F# eingebauten parametrischen Listen ein komplexeres
Problem lösen.

Schreiben Sie Ihre Lösungen in die Datei Steps.fs aus der Vorlage Aufgabe-5-4.zip.

Wir betrachten eine Treppe mit n Stufen und nehmen zunächst an, dass wir in einem Schritt entweder eine
oder zwei Stufen hinaufgehen können. Damit ergeben sich verschiedene Schrittfolgen, wie wir die Treppe
hinaufsteigen können. In der folgenden Abbildung sind alle Möglichkeiten für n = 3, also drei Stufen,
dargestellt.

Hinweis: Sie dürfen das List-Modul aus der Standardbibliothek verwenden.

[1N;1N;1N] [2N;1N] [1N;2N]

a) Schreiben Sie eine Funktion findSteps12, die alle möglichen Schrittfolgen einer n-stufigen Treppe be-
rechnet. In einem Schritt dürfen Sie eine oder zwei Treppenstufen weit hinaufsteigen.

Tipp: Verkleinern Sie das Problem und lösen Sie es dann durch rekursive Aufrufe. Überlegen Sie sich
dazu zuerst die Möglichkeiten für einen ersten Schritt. Danach benötigen Sie eine (kleinere) Schrittfolge,
um auf die insgesamt gewünschte Anzahl an Schritten zu kommen. Diese beiden Teillösungen (erster
Schritt und die kleinere Schrittfolge) müssen Sie dann zu einer Gesamtlösung zusammensetzen. Dazu
brauchen Sie gegebenenfalls noch eine Hilfsfunktion.

let rec prepend<'a> (x: 'a) (xs: List<List<'a>>): List<List<'a>> =
match xs with
| [] -> []
| y::ys -> (x::y)::(prepend x ys)

let rec findSteps12 (n: Nat): List<List<Nat>> =
if n = 0N then []
else if n = 1N then [[1N]]
else if n = 2N then [[1N; 1N]; [2N]]
else (prepend 1N (findSteps12 (n-1N))) @ (prepend 2N (findSteps12 (n-2N)))

Wir unterscheiden in findSteps12 drei Basisfälle:

• Wenn n = 0N, gibt es keine Stufen, wir geben eine leere Liste zurück.

• Für n = 1N gibt es genau eine mögliche Lösung.

• Für n = 2N geben wir die beiden möglichen Lösungen zurück.

Wenn n > 2N ist, können wir sowohl noch einen, als auch zwei Schritte gehen. Diese beiden Möglich-
keiten fügen wir jeweils an die Teillösungen der rekursiven Aufrufe an, die das Stufenproblem um
eine bzw. zwei Stufen kleinere Treppe lösen. Dazu definieren wir die rekursive Hilfsfunktion prepend.

8

b) Nun betrachten wir eine Treppe mit sehr kleinen Stufen. Sie können entweder eine, drei oder fünf Stufen
in einem Schritt hinaufsteigen. Implementieren Sie die Funktion findSteps135, welche alle möglichen
Schrittfolgen mit den genannten Schrittweiten berechnet.

let rec findSteps135 (n: Nat) : List<List<Nat>> =
if n = 0N then []
else if n = 1N then [[1N]]
else if n = 3N then [[1N;1N;1N]; [3N]]
else if n = 5N then [[1N;1N;1N;1N;1N]; [1N;1N;3N]

;[1N;3N;1N]; [3N;1N;1N]; [5N]]
else (prepend 1N (findSteps135 (n-1N))) @

(prepend 3N (findSteps135 (n-3N))) @
(prepend 5N (findSteps135 (n-5N)))

Wir verwenden dieselbe Idee wie in Teilaufgabe a) und passen die Basisfälle und rekursiven Aufrufe
entsprechend an. Für jede der Schrittweiten schreiben wir einen Basisfall und einen rekursiven Aufruf.
Für Stufenzahlen zwischen den Schrittweiten, also 2 und 4, brauchen wir keine gesonderten Basis-
fälle. Für n = 2N gibt nur der um eins kleinere rekursive Aufruf eine nicht leere Liste zurück, sodass
prepend nur für diesen Fall eine nichtleere Liste zurückgibt (wir erhalten als Ergebnis (prepend 1N
[[1N]]) @ (prepend 3N []) @ (prepend 5N []) = [[1N; 1N]]). Der Fall n = 4N funktioniert analog.

c) Da es sich hier um einen etwas umfangreicheren Algorithmus handelt, erwarten wir, dass Sie Ihren
Code so kommentieren, dass Ihre Lösung einfach nachzuvollziehen ist. Außerdem sollte Ihr Code keine
unnötig komplexen Ausdrücke enthalten, siehe auch Aufgabe 3. Dafür vergeben wir hier zwei Punkte.

d) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion findSteps, die zusätzlich eine Liste von Schritt-
weiten erwartet und entsprechend alle damit möglichen Schrittfolgen berechnet.

let rec contains <'a when 'a: equality> (x: 'a) (xs: List<'a>): Bool =
match xs with
| [] -> false
| y::ys -> y = x || contains x ys

let rec findSteps (n: Nat) (stepSizes: List<Nat>): List<List<Nat>> =
let rec h (xs: List<Nat>): List<List<Nat>> =

match xs with
| [] -> []
| x::xs -> (prepend x (findSteps (n-x) stepSizes)) @ (h xs)

if n = 0N then []
else

let res = h stepSizes
if contains n stepSizes then [n]::res else res

// Mit dem List Modul: List.collect f xs = List.concat (List.map f xs)
let rec findSteps ' (n: Nat) (stepSizes: List<Nat>): List<List<Nat>> =

if n = 0N then []
else

let res = List.collect (fun s -> prepend s (findSteps ' (n-s) stepSizes))
stepSizes

if List.contains n stepSizes then [n]::res else res

Der Basisfall für n = 0N bleibt bestehen. Für n > 0N rufen wir findSteps zunächst für alle um stepSizes
kleineren Teilprobleme rekursiv auf und konkatenieren die Teilergebnisse. In der als findSteps be-
zeichneten Lösung wird dies mit Hilfe einer rekursiven Hilfsfunktion umgesetzt. Dagegen verwendet
die als findSteps' bezeichnete Lösung Funktionen des List-Moduls und ist entsprechend etwas kürzer.

Falls es sich bei n um eine in stepSizes definierte Schrittweite handelt (das prüfen wir mit contains
bzw. List.contains), fügen wir dies als zusätzliche Lösung an die Ergebnisliste an.

9

Aufgabe 5 Balanciertes Ternärsystem (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie mit Listen und Variantentypen arbeiten. Sie können sich an den
Vorlesungsfolien 306 bis 331 und 379 bis 401 bzw. am Skript Kapitel 4.2 und 4.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Ternary.fs aus der Vorlage Aufgabe-5-5.zip.

Zur Zahlendarstellung verwenden wir in dieser Aufgabe ein balanciertes ternäres Stellenwertsystem, wel-
ches wir mit Hilfe von Listen modellieren. Als Ziffern werden M („minus eins“), Z („zero“ bzw. „null“) und
P („plus eins“) verwendet.

type Ternary = | M | Z | P // -1, 0, 1

Wir legen fest, dass die niederwertigste Ziffer vorne in der Liste steht und entsprechend die höchstwertige
Ziffer am Ende der Liste. Damit repräsentiert die Liste [M; Z; M; P] die Zahl (−1)·30+0·31+(−1)·32+1·33 =

17. Wir brauchen im balancierten Ternärsystem kein Vorzeichen, um negative Zahlen darzustellen.

Beachten Sie, dass die Darstellung einer Zahl aufgrund von führenden Nullen nicht eindeutig ist. Teilaufgabe
b) stellt eine Hilfsfunktion bereit, mit der Sie das Problem in den darauffolgenden Teilaufgaben umgehen
können.

Weitere Beispiele:

[M; P; M] // -7

[Z; P; M] // -6

[P; P; M] // -5

[M; M] // -4

[Z; M] // -3

[P; M] // -2

[M] // -1

[] // 0

[P] // 1

[M; P] // 2

[Z; P] // 3

[P; P] // 4

[M; M; P] // 5

[Z; M; P] // 6

[P; M; P] // 7

Hinweis: Wir verwenden in dieser Aufgabe den Typ Int der ganzen Zahlen. Zahl-Literale dieses Typs haben
keinen N-Suffix, die Zahl 42 ist also einfach 42 und −42 ist -42.

a) Schreiben Sie eine Funktion bedeutung: List<Ternary> -> Int, die für eine gegebene Repräsentation im
ternären Stellenwertsystem die entsprechende ganze Zahl berechnet.

let rec bedeutung (n: List<Ternary >): Int =
match n with
| [] -> 0
| M::ns -> 3 * bedeutung ns - 1
| Z::ns -> 3 * bedeutung ns // + 0
| P::ns -> 3 * bedeutung ns + 1

b) Implementieren Sie die Funktion zCons (einen „smarten Konstruktor“), die eine Null (Z) an eine Zahl
im balancierten Ternärsystem anhängt, sofern deren Darstellung nicht der leeren Liste entspricht. Ver-
wenden Sie diesen smarten Konstruktor in den folgenden Teilaufgaben, sofern Sie ein Z an eine Zahl im
balancierten Ternärsystem anfügen möchten.

Hinweis: Es genügt, wenn mit zCons nur der Fall behandelt wird, dass die übergebene Liste leer ist. Sie
müssen nicht prüfen, ob es weitere führende Nullen gibt. Damit ist z. B. zCons [Z] = [Z; Z]. Allerdings
tritt dieser Fall nicht auf, wenn statt Z:: stets zCons verwendet wird. Für oben genanntes Beispiel erhalten
wir also mit zCons (zCons [])) = [] das erwartete Ergebnis.

let zCons (ns: List<Ternary >): List<Ternary> =
match ns with
| [] -> []
| _ -> Z::ns

10

c) Schreiben Sie eine Funktion inc, die eine Zahl im balancierten Ternärsystem um den Wert eins erhöht.

let rec inc (n: List<Ternary >): List<Ternary> =
match n with
| [] -> [P]
| M::ns -> zCons ns
| Z::ns -> P::ns
| P::ns -> M::(inc ns)

d) Schreiben Sie eine Funktion dec, die eine Zahl im balancierten Ternärsystem um den Wert eins verrin-
gert.

let rec dec (n: List<Ternary >): List<Ternary> =
match n with
| [] -> [M]
| M::ns -> P::(dec ns)
| Z::ns -> M::ns
| P::ns -> zCons ns

e) Schreiben Sie eine Funktion fromInt: Int -> List<Ternary>, die eine ganze Zahl ins balancierte Ternär-
system überführt. Orientieren Sie sich am Leibniz Entwurfsmuster.

let rec fromInt (n: Int): List<Ternary> =
if n = 0 then []
else if n % 3 = 2 then M::(inc (fromInt (n/3)))
else if n % 3 = 1 then P::(fromInt (n/3))
else if n % 3 = -1 then M::(fromInt (n/3))
else if n % 3 = -2 then P::(dec (fromInt (n/3)))
else (* n % 3 = 0 *) zCons (fromInt (n/3))

f) Schreiben Sie eine Funktion add: List<Ternary> -> List<Ternary> -> List<Ternary>, die zwei Zahlen
im balancierten Ternärsystem addiert.

let rec add (m: List<Ternary >) (n: List<Ternary >): List<Ternary> =
match (m, n) with
| ([], x) | (x, []) -> x
| (M::ms, M::ns) -> P :: (add (dec ms) ns)
| (P::ms, P::ns) -> M :: (add (inc ms) ns)
| (M::ms, Z::ns) | (Z::ms, M::ns) -> M :: (add ms ns)
| (M::ms, P::ns) | (P::ms, M::ns) | (Z::ms, Z::ns) -> zCons (add ms ns)
| (P::ms, Z::ns) | (Z::ms, P::ns) -> P :: (add ms ns)

g) Schreiben Sie eine Funktion negative: List<Ternary> -> List<Ternary>, die das Vorzeichen einer Zahl
im balancierten Ternärsystem umkehrt.

let rec negative (n: List<Ternary >): List<Ternary> =
match n with
| [] -> []
| M::ns -> P::(negative ns)
| Z::ns -> zCons (negative ns)
| P::ns -> M::(negative ns)

11

	Parametrische Listen (Präsenzaufgabe)
	Warteschlangen (Einreichaufgabe, 12 Punkte)
	Ausdrücke vereinfachen (Einreichaufgabe, 3 Punkte)
	Stufenproblem (Einreichaufgabe, 12 Punkte)
	Balanciertes Ternärsystem (Trainingsaufgabe)

