Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik

Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 5: Konzepte der Programmierung (WS 2025/26)

Listen in F# Auf dem letzten Ubungsblatt haben wir bereits den Typ Nats fiir Listen natiirlicher Zahlen
verwendet. In der Vorlesung haben wir nun auch parametrisierte Typen kennengelernt. Unter anderem wurde
der folgende Typ fiir Listen definiert: type List<'a> = | Nil | Cons of 'a * List<'a>

Diese Typdefinition kommt mit den bislang bekannten Sprachelementen aus: Rekursive Varianten und Paare.
Wir kdnnen diese Typdefinition auch genauso in F# verwenden und z.B. die Liste der Zahlen 1N und 2N als
List<Nat> durch Cons (1IN, Cons (2N, Nil)) darstellen. In F# gibt es jedoch auch einen vordefinierten Typ
fiir Listen, fiir den es drei Notationen gibt: List<'a>, list<'a> sowie List<'a> (ungliicklicherweise schreibt
sich der in F# eingebaute Typ List<'a> gleich wie der Listentyp aus der Vorlesung, jedoch hat der F# Typ
die Konstruktoren [] und ::). Dieser Typ ist nicht kompatibel mit dem selbst definierten Typ List<'a> aus
der Vorlesung. Es ist daher wichtig zu wissen, welchen Typ man gerade verwendet. Die Unterschiede finden
Sie auf Vorlesungsfolie 402.

In den Ubungen verwenden wir iiberwiegend den in F# vordefinierten Typ fiir Listen. Dies hat den Vor-
teil, dass wir eine kiirzere Notation fiir die Darstellung der Listen nutzen konnen: [1N; 2N; 3N] statt
Cons (1IN, Cons (2N, Cons (3N, Nil))). AuBlerdem werden wir einige vordefinierte Funktionen (sogenannte
Bibliotheksfunktionen) kennenlernen, die auch nur mit dem vordefinierten Listen-Typ funktionieren.

Typparameter Einschrankungen in F# In der Vorlesung haben wir polymorphe Funktionen kennen-
gelernt. Der Typ enthilt hierbei einen Typparameter, sodass die Funktion fiir verschiedene Typen nutzbar
wird. Oft ist man jedoch nicht ganz frei in der Wahl des Typs: Wenn Elemente des Typs miteinander ver-
glichen werden (=, <, <=, usw.), dann muss der Typ diese Vergleichsoperation unterstiitzen. Eine polymor-
phe contains Funktion, die iiberpriift ob ein gegebener Wert vom Typ 'a in einer Liste vom Typ List<'a>
enthalten ist, setzt voraus, dass der Typ 'a die Gleichheit unterstiitzt. Die meisten Typen unterstiitzen so-
wohl Gleichheit als auch Ordnungsvergleiche; Strings und Listen sind beispielweise lexikografisch geord-
net. Es gibt aber auch Typen, die diese Vergleichsoperationen nicht unterstiitzen. Das sind insbesondere die
Funktionstypen. Der Ausdruck (fun (x: Nat) -> x + x) = (fun (x: Nat) -> 2N * x) ist also nicht wohlge-
typt, da der Typ Nat -> Nat die Gleichheit nicht unterstiitzt. Der Typparameter fiir polymorphe Funktionen
kann wie folgt eingeschrinkt werden: let contains<'a when 'a : equality> (x: 'a) (xs: List<'a>): Bool

= Dabei ist equality die Einschrinkung, dass die Gleichheit (=) unterstiitzt werden muss. Fiir Ord-
nungsvergleiche (<, <=, min, ...) heifit die Einschrinkung comparison und beinhaltet automatisch auch die
Gleichheit. Sie brauchen sich nicht weiter damit zu befassen, jedoch werden manche Vorlagen derartige
Typeinschriankungen enthalten. Diese miissen Sie so in der Vorlage stehen lassen, da der Code ansonsten
nicht mehr kompilieren wird.

Aufrufen von polymorphen Funktionen in F# Wie auf Vorlesungsfolie 398 beschrieben, kann der
Typparameter beim Aufrufen polymorpher Funktionen meist weggelassen werden. Allerdings gilt dies nicht
immer, wenn der Typparameter eingeschrénkt ist (sieche vorheriger Abschnitt). Die vordefinierte Funktion
max<'a when 'a : comparison>: 'a -> 'a -> 'a gibt das grofere der beiden Argumente zuriick. Wir knnen
max<List<Nat>> [5N; 6N] [7N; 1N] ohne Typparameter aufrufen (max [5N; 6N] [7N; 1N1), da F# den Typpa-
rameter List<Nat> aus den Argumenten bestimmen kann. Sind die beiden Eingabelisten jedoch leer, dann
ist diese Verkiirzung nicht moglich: max []1 [] gibt einen Fehler, wihrend max<List<Nat>> []1 [] funktio-
niert. Wenn Sie also den Fehler FS0030: Value restriction erhalten, miissen Sie beim Funktionsaufruf den
Typparameter explizit angeben.

Vorbereitung auf die Klausur Wir legen Ihnen ans Herz, mit der Klausurvorbereitung rechtzeitig zu
beginnen. Sie konnen sich mit Hilfe der alten GdP Klausuren im KAI System' einen Eindruck vom Aufbau
der Klausur verschaffen.

Als Hilfsmittel fiir die Klausuren sind zwei beidseitig handschriftlich beschriebene DIN A4 Blitter zugelas-
sen. Beginnen Sie moglichst schon jetzt damit diese vorzubereiten. Schreiben Sie Dinge auf, die Sie nicht
auswendig lernen mochten, aber dennoch hilfreich bei der Bearbeitung von Klausuraufgaben sein konnten.
Dies sind zum Beispiel die Regeln der statischen und dynamischen Semantik. Ansonsten kénnten noch die
Parameter- und Riickgabetypen einiger niitzlicher Bibliotheksfunktionen, die Sie zum Losen der Ubungs-
aufgaben bereits benutzt haben, hilfreich sein. Beachten Sie, dass bereits das Erstellen dieser “Spickzettel”
einen Lernprozess darstellt. Sie sollten sich also Thre eigenen Blitter konzipieren und nicht von Kommili-
toninnen und Kommilitonen abschreiben.

Aufgabe 1 Parametrische Listen (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den in F# eingebauten parametrischen Listen vertraut
machen. Sie konnen sich an den Vorlesungsfolien 378 bis 403 sowie am Skript Kapitel 4.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Lists. fs aus der Vorlage Aufgabe-5-1.zip.

Wir betrachten unter anderem einige aus Ubungsblatt 4, Aufgabe 1 und 3 bekannte Funktionen noch einmal
und verallgemeinern diese. Dazu werden die in F# eingebauten parametrischen Listen verwendet. Bitte
beachten Sie die Hinweise zu Listen in F# auf der ersten Seite.

Hinweis: Verwenden Sie in Ihrer Losung nicht das List-Modul aus der Standardbibliothek.

Wir verwenden bei einigen Teilaufgaben folgende Beispielliste:

let ex = [2N; 4N; 3N; 4N; 2N; 1N]

a) Schreiben Sie eine Funktion plusOne: List<Nat> -> List<Nat>, die eine Liste natiirlicher Zahlen nimmt
und zu jeder Zahl in der Liste die Zahl 1 addiert. Vergleichen Sie mit der gleichnamigen Funktion von
Ubungsblatt 4, Aufgabe 1.

Beispiele:
plusOne [] [1
plusOne ex = [3N; 5N; 4N; 5N; 3N; 2N]

let rec plusOne (xs: List<Nat>): List<Nat> =
match xs with
| [1 -> []
| x::ys -> (x + 1IN)::(plusOne ys)

Gegeniiber Aufgabe 1 von Ubungsblatt 4 miissen nur die Konstruktoren ausgetauscht werden. Statt
Nil haben wir jetzt [1 und anstelle von Cons (x, xs) (Prifix) schreiben wir x: :xs (Infix).

Thttps://kai.informatik.uni-k1.de/, Abruf nur aus dem Uni-Netz bzw. VPN https://rz.rptu.de/vpn/.

https://kai.informatik.uni-kl.de/
https://rz.rptu.de/vpn/

b) Schreiben Sie eine Funktion filter<'a>: ('a -> Bool) -> List<'a> -> List<'a>, die eine Funktion p

und eine Liste xs nimmt und die Liste der Elemente aus xs zuriickgibt, fiir die p true zuriickgibt.

Beispiele:
filter (fun x -> x > 3N) [] = []
filter (fun x -> x > 3N) ex = [4N; 4N]

filter (fun x -> x <= 3N) ex = [2N; 3N; 2N; 1IN]

let rec filter<'a> (p: 'a -> Bool) (xs: List<'a>»): List<'a> =
match xs with

| [1 -> []
| x::xs8 ->
if p x

then x::(filter p xs)
else filter p xs

c) Schreiben Sie eine Funktion concat<'a>: List<'a> -> List<'a> -> List<'a>, die zwei parametrische

d)

Listen xs und ys nimmt und deren Konkatenation berechnet, also die Liste in der zuerst alle Elemente
aus xs und dann die Elemente aus ys kommen. Verwenden Sie nicht den in F# eingebauten Konkatena-
tionsoperator @.

Beispiele:

concat [] ex = ex

concat ex [] = ex

concat [IN] [2N] = [1IN; 2N]

let rec concat<'a> (xs: List<'a>) (ys: List<'a>): List<'a> =
match xs with

| [1 ->vys
| x::zs -> x::(concat zs ys)

Schreiben Sie eine Funktion mirror<'a>: List<'a> -> List<'a>, die eine Liste nimmt und die gespiegel-
te Liste berechnet, also eine Liste in der die Elemente in umgekehrter Reihenfolge enthalten sind.

Beispiele:
mirror []

[1
mirror ex = [1IN; 2N; 4N; 3N; 4N; 2N]

// Losung mit Laufzeit quadratisch in der L&ange von Xxs
let rec mirror<'a> (xs: List<'a>»): List<'a> =

match xs with

[[1 -> [1

| x::ys -> concat (mirror ys) [x]

// Effizientere Losung (lineare Laufzeit)
let mirror'<'a> (xs: List<'a>): List<'a> =
// Hilfsfunktion berechnet concat (mirror xs) zs
let rec mirrorConcat (xs: List<'a>) (zs: List<'a>): List<'a> =
match xs with
| [1 -> zs
| X::ys -> mirrorConcat ys (x::zs)
mirrorConcat xs []

e) Schreiben Sie eine Funktion sum: List<Nat> -> Nat, die eine Liste natiirlicher Zahlen nimmt und die
Summe der Zahlen zuriickgibt.

Beispiele:

sum [] = ON sum ex = 16N

let rec sum (xs: List<Nat>): Nat =
match xs with

| [1 -> 0N
| x::ys -> x + sum ys

Aufgabe 2 Warteschlangen (Einreichaufgabe, 12 Punkte)

Motivation: In dieser Aufgabe sollen Sie das Programmieren mit Records und parametrisierten Typen ein-
tiben. Sie konnen sich an den Vorlesungsfolien 280 bis 304 und 378 bis 403 sowie am Skript Kapitel 4.1
und 4.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Queue. fs aus der Vorlage Aufgabe-5-2.zip.

Eine Warteschlange (engl. queue) ist eine Datenstruktur, welche eine Sammlung von Elementen verwaltet
und es in moglichst effizienter Weise erlaubt, sowohl Elemente ans Ende anzufiigen als auch vom Anfang
zu entfernen.

Wiirden wir eine einfache Liste als Warteschlange verwenden, miissten wir fiir eine der genannten Ope-
rationen ganz durch die Liste laufen. Um ein besseres Laufzeitverhalten zu erzielen, modellieren wir in
dieser Aufgabe Warteschlangen mit Hilfe zweier Listen. Dabei reprisentiert die erste Liste die Vorderseite
der Warteschlange, ihr erstes Element steht ganz vorne in der Warteschlange. Die zweite Liste reprisentiert
das Ende der Warteschlange in umgekehrter Reihenfolge, ihr erstes Element korrespondiert also zum letz-
ten Element der Warteschlange. Die gesamte Warteschlange erhilt man, wenn man beide Listen aneinander
hingt und eine dabei spiegelt.

Die Warteschlange selbst wird durch den Typ DEQ<'a> (fiir engl. double ended queue) modelliert.

type DEQ<'a> = // Die Warteschlange
{ frontLength: Nat
front: List<'a>
rearLength: Nat
rear: List<'a>

}

Wie Sie sehen, merken wir uns zusitzlich die Lingen beider Listen. Wir legen fest, dass die hintere Liste
nie mehr Elemente enthalten darf, als die vordere Liste. Wire dies beim Anfiigen eines neuen Elements
der Fall, so hiangen wir die Elemente der hinteren Liste in umgekehrter Reihenfolge an das Ende der vorderen
Liste an. Dadurch folgt, dass die vordere Liste nur leer ist, wenn auch die hintere Liste leer ist.

Hinweis: Beachten Sie die Hinweise auf der ersten Seite.

Hinweis: Wenn Sie mochten, kénnen Sie in Ihrer Losung das List-Modul aus der Standardbibliothek ver-
wenden.

a) Schreiben Sie eine Funktion isEmpty<'a>: DEQ<'a> -> Bool, die eine Warteschlange als Argument er-
wartet und zuriickgibt, ob die Warteschlange leer ist oder nicht.

let isEmpty<'a> (q: DEQ<'a>): Bool =
gq.frontLength = ON

Aufgrund der im Aufgabentext genannten Invariante geniigt es zu priifen, ob die vordere Liste leer
ist. Dies ist der Fall, wenn diese die Lénge oN hat. Wir kdnnen alternativ mit Hilfe von match eine
entsprechende Fallunterscheidung der Liste selbst durchfiihren. Wenn wir versuchen mit q. front = []
zu priifen, ob die Liste leer ist, erhalten wir die Fehlermeldung FS0001: Einem Typparameter fehlt die

Einschrankung "when 'a : equality". Die Priifung auf Gleichheit ist nur moglich, wenn dies explizit
fiir den Typparameter gefordert wird (s. Seite 1).

b) Schreiben Sie eine Funktion repair<'a>: DEQ<'a> -> DEQ<'a>, die priift, ob die Warteschlange die Inva-
riante erfiillt. Ist dies der Fall, wird die Warteschlange unverédndert zuriickgegeben. Andernfalls wird die
Invariante hergestellt und die resultierende Warteschlange zuriickgegeben.

Hinweis: Sie miissen nicht extra die Langen der Listen mit frontLength und rearLength abgleichen (in-
dem Sie z.B. q. front.Length verwenden). Stattdessen werden die Lingen frontLength und rearLength in
jeder manipulierenden Operation so angepasst, dass sie die Langen der Listen korrekt angeben.

d)

let rec repair<'a> (q: DEQ<'a>): DEQ<'a> =
if g.rearlLength <= q.frontLength then

q
else

{ frontLength = q.frontlLength + q.rearlLength
; front = q.front @ List.rev q.rear

; rearLength = ON

; rear = []}

Wenn die Invariante erfiillt ist (die hintere Liste ist kiirzer oder gleich lang wie die vordere Liste),
wird die Warteschlange unveridndert zuriickgegeben. Ist die Invariante verletzt, so wird die hintere
Liste in umgekehrter Reihenfolge an die vordere Liste angehingt. Die Lingen werden entsprechend
angepasst.

Schreiben Sie eine Funktion enqueue<'a>: 'a -> DEQ<'a> -> DEQ<'a>, welche ein Element x sowie eine
Warteschlange g nimmt. Das Element x soll am Ende der Warteschlange q eingefiigt und die resultierende
Warteschlange als Ergebnis zuriickgegeben werden.

Hinweis: Verwenden Sie die repair Funktion.

let rec enqueue<'a> (x: 'a) (q: DEQ<'a>): DEQ<'a> =
repair { q with rearlLength = g.rearLength + 1N ; rear = x::q.rear}

Da sich das letzte Element der Warteschlange ganz vorne in der rear Liste befindet, kdnnen wir x
einfach dort anfiigen. Die Lénge der hinteren Liste wird entsprechend um 1 erhoht. Die Schreibweise
{q with ...} erlaubt uns, ein neues Record zu konstruieren, welches standardméfBig mit den Inhalten
aus q befiillt wird, aber an den in ... genannten Feldern gedndert wird (damit sparen wir uns etwas
Schreibarbeit). Zu guter Letzt verwenden wir repair, um die Einhaltung der Invariante sicherzustellen.

Schreiben Sie eine Funktion dequeue<'a>: DEQ<'a> -> Option<'a * DEQ<'a>>, die das vorderste Element
der Warteschlange entnimmt. Zuriickgegeben wird ein Paar bestehend aus diesem vordersten Element
sowie der restlichen Warteschlange. Wenn die Warteschlange leer ist gibt es kein vorderstes Element;
daher kommt der option-Typ zum Einsatz, sodass dann None zuriickgegeben werden kann.

Hinweis: Sie haben den Optionstyp Option<'a> in der Vorlesung auf Folie 398 bzw. im Skript auf Seite
135 kennengelernt. Tatséchlich ist dieser Typ genau so in F# bereits eingebaut.

let dequeue<'a> (q: DEQ<'a>): Option<'a * DEQ<'a>> =
match g.front with
| [1] -> None
| y::ys -> Some (
Yy,
repair {q with frontLength = q.frontLength - 1N; front = ys}

Aufgrund der Invariante geniigt es, die vordere Liste zu analysieren. Ist diese leer, so gibt die Funktion
None zuriick. Ansonsten verwenden wir wieder die Idee aus der vorherigen Teilaufgabe: Das vorderste
Element wird entfernt, die Lange entsprechend angepasst und schlieBlich wird mit repair die Einhal-
tung der Invariante sichergestellt.

Aufgabe 3 Ausdricke vereinfachen (Einreichaufgabe, 3 Punkte)

Motivation: Wir haben in den Klausuren die Erfahrung gemacht, dass Studierende hiufig unnétig komplexe
Ausdriicke schreiben. Einerseits vermindert ein solch komplexer Ausdruck die Lesbarkeit, andererseits kos-
tet er wertvolle Zeit beim Aufschreiben. Daher wollen wir zu diesem frithen Zeitpunkt schon einiiben, wie
man gingige Ausdriicke moglichst kurz darstellen kann.

Schreiben Sie Ihre Losungen in die Datei Simplify. fs aus der Vorlage Aufgabe-5-3.zip.

Geben Sie fiir die folgenden Ausdriicke jeweils einen vereinfachten (also moglichst kurzen) Ausdruck an,
der auf jeden Fall zu demselben Wert wie der urspriingliche Ausdruck auswertet.

Beispiel: false = (a = true) ldsst sich vereinfachen zu not a.

a) if a then b else false

a & b

b) if (a = true) then 2N else 3N

if a then 2N else 3N

c) if (x <> ON) then false else true

x = ON

Aufgabe 4 Stufenproblem (Einreichaufgabe, 12 Punkte)

Motivation: In dieser Aufgabe sollen Sie mit den in F# eingebauten parametrischen Listen ein komplexeres
Problem I6sen.

Schreiben Sie Ihre Losungen in die Datei Steps. fs aus der Vorlage Aufgabe-5-4.zip.

Wir betrachten eine Treppe mit n Stufen und nehmen zunichst an, dass wir in einem Schritt entweder eine
oder zwei Stufen hinaufgehen kdnnen. Damit ergeben sich verschiedene Schrittfolgen, wie wir die Treppe
hinaufsteigen konnen. In der folgenden Abbildung sind alle Mdoglichkeiten fiir n = 3, also drei Stufen,
dargestellt.

Hinweis: Sie diirfen das List-Modul aus der Standardbibliothek verwenden.

[IN;1N;1N] [2N; 1N] [1N;2N]

a)

Schreiben Sie eine Funktion findSteps12, die alle moglichen Schrittfolgen einer n-stufigen Treppe be-
rechnet. In einem Schritt diirfen Sie eine oder zwei Treppenstufen weit hinaufsteigen.

Tipp: Verkleinern Sie das Problem und lésen Sie es dann durch rekursive Aufrufe. Uberlegen Sie sich
dazu zuerst die Moglichkeiten fiir einen ersten Schritt. Danach benétigen Sie eine (kleinere) Schrittfolge,
um auf die insgesamt gewlinschte Anzahl an Schritten zu kommen. Diese beiden Teillosungen (erster
Schritt und die kleinere Schrittfolge) miissen Sie dann zu einer Gesamtlosung zusammensetzen. Dazu
brauchen Sie gegebenenfalls noch eine Hilfsfunktion.

let rec prepend<'a> (x: 'a) (xs: List<List<'a>>): List<List<'a>»> =
match xs with
| [1 -> [1
| y::ys -> (x::y)::(prepend x ys)

let rec findSteps12 (n: Nat): List<List<Nat>> =

if n = ON then []
else if n = 1IN then [[1IN]]
else if n = 2N then [[IN; 1IN]; [2N]]

else (prepend 1IN (findStepsl2 (n-1N))) @ (prepend 2N (findStepsl2 (n-2N)))

Wir unterscheiden in findSteps12 drei Basisfille:
e Wennn = 0N, gibt es keine Stufen, wir geben eine leere Liste zuriick.
e Fiirn = 1N gibt es genau eine mogliche Losung.
e Fiirn = 2N geben wir die beiden moglichen Losungen zuriick.

Wenn n > 2N ist, kénnen wir sowohl noch einen, als auch zwei Schritte gehen. Diese beiden Moglich-
keiten fiigen wir jeweils an die Teillosungen der rekursiven Aufrufe an, die das Stufenproblem um
eine bzw. zwei Stufen kleinere Treppe 16sen. Dazu definieren wir die rekursive Hilfsfunktion prepend.

b)

d)

Nun betrachten wir eine Treppe mit sehr kleinen Stufen. Sie konnen entweder eine, drei oder fiinf Stufen
in einem Schritt hinaufsteigen. Implementieren Sie die Funktion findSteps135, welche alle moglichen
Schrittfolgen mit den genannten Schrittweiten berechnet.

let rec findSteps135 (n: Nat) : List<List<Nat>> =
if n = ON then []
else if n = 1IN then [[1N]]
else if n = 3N then [[1N;IN;1N]; [3N]]
else if n = 5N then [[IN;1N;1N;1N;1N]; [1N;1N;3N]
; [IN;3N;IN]; [3N;IN;IN]; [5N]]
else (prepend 1N (findSteps135 (n-1N))) @
(prepend 3N (findSteps135 (n-3N))) @
(prepend 5N (findSteps135 (n-5N)))

Wir verwenden dieselbe Idee wie in Teilaufgabe a) und passen die Basisfille und rekursiven Aufrufe
entsprechend an. Fiir jede der Schrittweiten schreiben wir einen Basisfall und einen rekursiven Aufruf.
Fiir Stufenzahlen zwischen den Schrittweiten, also 2 und 4, brauchen wir keine gesonderten Basis-
fille. Fir n = 2N gibt nur der um eins kleinere rekursive Aufruf eine nicht leere Liste zuriick, sodass
prepend nur fiir diesen Fall eine nichtleere Liste zuriickgibt (wir erhalten als Ergebnis (prepend 1N
[[1N]]) @ (prepend 3N []) @ (prepend 5N [1) = [[IN; 1NI1). Der Fall n = 4N funktioniert analog.

Da es sich hier um einen etwas umfangreicheren Algorithmus handelt, erwarten wir, dass Sie Thren
Code so kommentieren, dass Ihre Losung einfach nachzuvollziehen ist. Aulerdem sollte Ihr Code keine
unndtig komplexen Ausdriicke enthalten, siehe auch Aufgabe 3. Dafiir vergeben wir hier zwei Punkte.

Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion findSteps, die zusétzlich eine Liste von Schritt-
weiten erwartet und entsprechend alle damit moglichen Schrittfolgen berechnet.

let rec contains<'a when 'a: equality> (x: 'a) (xs: List<'a>): Bool =
match xs with
| [1 -> false
| y::ys ->y = x || contains x ys

let rec findSteps (n: Nat) (stepSizes: List<Nat>): List<List<Nat>> =

let rec h (xs: List<Nat>): List<List<Nat>> =

match xs with

[[1 ->I[1

| x::xs -> (prepend x (findSteps (n-x) stepSizes)) @ (h xs)
if n = ON then []
else

let res = h stepSizes

if contains n stepSizes then [n]::res else res

// Mit dem List Modul: List.collect f xs = List.concat (List.map f xs)
let rec findSteps' (n: Nat) (stepSizes: List<Nat>): List<List<Nat>> =
if n = ON then []
else
let res = List.collect (fun s -> prepend s (findSteps' (n-s) stepSizes))
stepSizes
if List.contains n stepSizes then [n]::res else res

Der Basisfall fiirn = oN bleibt bestehen. Fiirn > ON rufen wir findSteps zunéchst fiir alle um stepSizes
kleineren Teilprobleme rekursiv auf und konkatenieren die Teilergebnisse. In der als findSteps be-
zeichneten Losung wird dies mit Hilfe einer rekursiven Hilfsfunktion umgesetzt. Dagegen verwendet
die als findSteps' bezeichnete Losung Funktionen des List-Moduls und ist entsprechend etwas kiirzer.

Falls es sich bei n um eine in stepSizes definierte Schrittweite handelt (das priifen wir mit contains
bzw. List.contains), fligen wir dies als zusétzliche Losung an die Ergebnisliste an.

Aufgabe 5 Balanciertes Ternarsystem (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie mit Listen und Variantentypen arbeiten. Sie konnen sich an den
Vorlesungsfolien 306 bis 331 und 379 bis 401 bzw. am Skript Kapitel 4.2 und 4.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Ternary. fs aus der Vorlage Aufgabe-5-5. zip.

Zur Zahlendarstellung verwenden wir in dieser Aufgabe ein balanciertes ternires Stellenwertsystem, wel-
ches wir mit Hilfe von Listen modellieren. Als Ziffern werden ¥ (,,minus eins*), Z (,,zero* bzw. ,,null*) und
P (,,plus eins‘‘) verwendet.

type Ternary = | M | Z | P // -1, 0, 1

Wir legen fest, dass die niederwertigste Ziffer vorne in der Liste steht und entsprechend die hochstwertige
Ziffer am Ende der Liste. Damit repréasentiert die Liste [M; z; M; P] die Zahl (—1)-3040-314(=1)-32+1-3% =
17. Wir brauchen im balancierten Ternérsystem kein Vorzeichen, um negative Zahlen darzustellen.

Beachten Sie, dass die Darstellung einer Zahl aufgrund von fithrenden Nullen nicht eindeutig ist. Teilaufgabe
b) stellt eine Hilfsfunktion bereit, mit der Sie das Problem in den darauffolgenden Teilaufgaben umgehen
konnen.

Weitere Beispiele:

M; p; M1 // -7 M; M1 // -4 mi// -1 M; P1 // 2 M; M; P] // 5
[Z; p; M1 // -6 [(z; M1 // -3 x 7/ o [z; P1 // 3 [Z; M; P]1 // 6
[P; P; M] // -5 [P; M1 // -2 (p1 // 1 [P; P1 // 4 [P; M; P] // 7

Hinweis: Wir verwenden in dieser Aufgabe den Typ Int der ganzen Zahlen. Zahl-Literale dieses Typs haben
keinen N-Suffix, die Zahl 42 ist also einfach 42 und —42 ist -42.

a) Schreiben Sie eine Funktion bedeutung: List<Ternary> -> Int, die fiir eine gegebene Reprisentation im
terniren Stellenwertsystem die entsprechende ganze Zahl berechnet.

let rec bedeutung (n: List<Ternary>): Int =
match n with
| [1 >0
| M::ns -> 3 * bedeutung ns - 1
| Z::ns -> 3 * bedeutung ns // + 0
| P::ns -> 3 * bedeutung ns + 1

b) Implementieren Sie die Funktion zCons (einen ,,smarten Konstruktor*), die eine Null (z) an eine Zahl
im balancierten Ternédrsystem anhéngt, sofern deren Darstellung nicht der leeren Liste entspricht. Ver-
wenden Sie diesen smarten Konstruktor in den folgenden Teilaufgaben, sofern Sie ein zZ an eine Zahl im
balancierten Ternérsystem anfiigen mochten.

Hinweis: Es geniigt, wenn mit zCons nur der Fall behandelt wird, dass die iibergebene Liste leer ist. Sie
miissen nicht priifen, ob es weitere fithrende Nullen gibt. Damit ist z. B. zCons [2] = [Z; z]. Allerdings
tritt dieser Fall nicht auf, wenn statt Z: : stets zCons verwendet wird. Fiir oben genanntes Beispiel erhalten
wir also mit zCons (zCons [])) = [] das erwartete Ergebnis.

let zCons (ns: List<Ternary>): List<Ternary> =
match ns with
| 1 -> T[]

| _ -> Z::ns

10

¢) Schreiben Sie eine Funktion inc, die eine Zahl im balancierten Ternédrsystem um den Wert eins erhoht.

let rec inc (n: List<Ternary>): List<Ternary> =
match n with
| [1 -> [P]
| M::ns -> zCons ns
| Z::ns -> P::ns
| P::ns -> M::(inc ns)

d) Schreiben Sie eine Funktion dec, die eine Zahl im balancierten Ternédrsystem um den Wert eins verrin-
gert.

let rec dec (n: List<Ternary>): List<Ternary> =
match n with
[[1 -> [M]
| M::ns -> P::(dec ns)
| Z::ns -> M::ns
| P::ns -> zCons ns

e) Schreiben Sie eine Funktion fromInt: Int -> List<Ternary>, die eine ganze Zahl ins balancierte Ternir-
system iiberfiihrt. Orientieren Sie sich am Leibniz Entwurfsmuster.

let rec fromInt (n: Int): List<Ternary> =
if n = 0 then []

else if n % 3 = 2 then M::(inc (fromInt (n/3)))
else if n % 3 = 1 then P::(fromInt (n/3))

else if n % 3 = -1 then M:: (fromInt (n/3))

else if n % 3 = -2 then P::(dec (fromInt (n/3)))
else (* n % 3 = 0 *) zCons (fromInt (n/3))

f) Schreiben Sie eine Funktion add: List<Ternary> -> List<Ternary> -> List<Ternary>, die zwei Zahlen
im balancierten Ternérsystem addiert.

let rec add (m: List<Ternary>) (n: List<Ternary>): List<Ternary> =
match (m, n) with

[(1, x> | x, [1) -> x

| (M::ms, M::ns) -> P :: (add (dec ms) ns)

| (P::ms, P::ns) -> M :: (add (inc ms) ns)

| (M::ms, Z::ns) | (Z::ms, M::ns) -> M :: (add ms ns)
| (M::ms, P::ns) | (P::ms, M::ns) | (Z::ms, Z::ns) -> zCons (add ms ns)
| (P::ms, Z::ns) | (Z::ms, P::ns) -> P :: (add ms ns)

g) Schreiben Sie eine Funktion negative: List<Ternary> -> List<Ternary>, die das Vorzeichen einer Zahl
im balancierten Ternédrsystem umkehrt.

let rec negative (n: List<Ternary>): List<Ternary> =
match n with
[[1 -> [1

M::ns -> P::(negative ns)

:ns -> zCons (negative ns)

:ns -> M::(negative ns)

11

	Parametrische Listen (Präsenzaufgabe)
	Warteschlangen (Einreichaufgabe, 12 Punkte)
	Ausdrücke vereinfachen (Einreichaufgabe, 3 Punkte)
	Stufenproblem (Einreichaufgabe, 12 Punkte)
	Balanciertes Ternärsystem (Trainingsaufgabe)

