
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 6: Konzepte der Programmierung (WS 2025/26)

Probeklausur Sie können sich ab sofort im ExClaim System für die Probeklausur am 16.12.2025 anmel-
den. Klicken Sie dazu unten auf der “KdP25” Seite bei der Probeklausur auf den Button “anmelden”. Die
Anmeldung schließt am 10.12.2025 um 23:59 Uhr.

Aufgabe 1 Binärbäume (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie üben mit komplexeren rekursiven Varianten zu programmieren.
Sie können sich an den Vorlesungsfolien 512 bis 526 sowie am Skript Kapitel 5.2.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Tree.fs aus der Vorlage Aufgabe-6-1.zip.

Bisher sind Ihnen in erster Linie Listen als Beispiel für rekursive Variantentypen begegnet. Es ist jedoch
auch möglich mit Hilfe rekursiver Varianten komplexere Datenstrukturen zu konstruieren. Wir werden in
dieser Aufgabe exemplarisch den Typ der Bäume betrachten:

type Tree<'a> =
| Leaf // Blatt
| Node of Tree<'a> * 'a * Tree<'a> // Knoten

Ein Baum (Tree) besteht entweder aus einem Blatt (Leaf) oder aus einem Knoten (Node), welcher einen
linken Teilbaum, ein Element und einen rechten Teilbaum hat.

Abgesehen von der Struktur der Konstruktoren stellen wir in dieser Aufgabe keine weiteren Anforderungen
an den Baum. Sie haben in der Vorlesung bereits Bäume kennengelernt, die durch Hinzunahme bestimmter
Invarianten nützliche Eigenschaften erhalten, mit deren Hilfe sich z. B. Suchalgorithmen effizient imple-
mentieren lassen.

Bei den Teilaufgaben verwenden wir folgenden Beispielbaum:

let ex = Node (Node (Leaf, 1N, (Node (Leaf, 2N, Leaf))), 3N, (Node (Leaf, 4N, Leaf)))

a) Schreiben Sie eine Funktion countLeaves, welche die Anzahl der Blätter in einem Baum zurückgibt.

Beispiele:

countLeaves Leaf = 1N countLeaves ex = 5N

let rec countLeaves <'a> (t: Tree<'a>): Nat =
match t with
| Leaf -> 1N
| Node (l, _, r) -> countLeaves l + countLeaves r

Wir folgen dem Struktur Entwurfsmuster: Elemente des Typs Tree<'a> können nur mit den Konstruk-
toren Leaf und Node konstruiert werden, mit match führen wir den Musterabgleich durch. Liegt ein
Blatt vor, wird 1N zurückgegeben (hier kann es insbesondere keinen rekursiven Aufruf mehr geben,
da ein Blatt nach Konstruktion keine Kindelemente haben kann). Falls ein Knoten vorliegt, erhöht sich
die Anzahl der Blätter nicht, wir können uns vorstellen, dass 0N zur Summe der rekursiven Aufrufe
hinzuaddiert wird.

b) Schreiben Sie eine Funktion height, welche die Höhe eines Baumes berechnet.

Beispiele:

height Leaf = 0N height ex = 3N

let rec height<'a> (t: Tree<'a>): Nat =
match t with
| Leaf -> 0N
| Node (l, _, r) -> 1N + max (height l) (height r)

Ein einzelnes Blatt hat die Höhe 0, ein Knoten die Höhe 1. Da die maximale Höhe gesucht ist, be-
rechnen wir, sofern ein Knoten vorliegt, das Maximum der Höhen des linken und rechten Teilbaums.

c) Schreiben Sie eine Funktion map, die eine Funktion auf alle Knotenelemente eines Baums anwendet.

Beispiele:

map (fun x -> x * 2N) Leaf = Leaf
map (fun x -> x * 2N) ex = Node (Node (Leaf, 2N, (Node (Leaf, 4N, Leaf)))

, 6N, (Node (Leaf, 8N, Leaf)))

let rec map<'a, 'b> (f: 'a -> 'b) (t: Tree<'a>): Tree<'b> =
match t with
| Leaf -> Leaf
| Node (l, x, r) -> Node (map f l, f x, map f r)

Wenn ein Knoten vorliegt, wenden wir f auf das Knotenelement an und rufen map rekursiv auf den
Teilbäume auf.

2

Aufgabe 2 Heaps (Einreichaufgabe, 14 Punkte)

Motivation: In dieser Aufgabe sollen Sie üben mit komplexeren rekursiven Varianten zu programmieren.
Sie können sich an den Vorlesungsfolien 512 bis 525 sowie am Skript Kapitel 5.2.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Heaps.fs aus der Vorlage Aufgabe-6-2.zip.

Ein Heap ist eine Datenstruktur in Form eines Binärbaums: Ein Heap ist entweder leer oder ein Knoten mit
einem Eintrag, einem linken Teilbaum und einem rechten Teilbaum. Die Datenstruktur dient dazu, Elemente
partiell geordnet abzuspeichern. Daher muss ein gültiger Heap die Heap-Bedingung erfüllen: Der Eintrag
jedes Knotens muss kleiner oder gleich der Einträge seiner beiden Teilbäumen sein.

type Heap<'a> =
| Empty
| Node of Heap<'a> * 'a * Heap<'a>

Beispiele für gültige Heaps:
let ex1 = Node(Node(Empty,6N,Empty), 2N, Node(Empty,4N,Empty))

let ex2 = Node(Node(Empty,7N,Empty), 3N, Node(Empty,5N,Empty))

let ex3 = Node(Node(Empty,1N,Empty), 1N, Empty)

Beispiele für ungültige Heaps:
let inv1 = Node(Node(Empty,2N,Empty), 3N, Empty)

let inv2 = Node(Node(Node(Empty,4N,Empty), 5N, Empty), 3N, Empty)

a) Schreiben Sie Funktionen size und height jeweils vom Typ Heap<'a> -> Nat, die die Größe bzw. Höhe
eines Heaps berechnen. Die Größe entspricht der Anzahl an Einträgen. Die Höhe ist die Länge des
längsten Pfades von der Wurzel des Heaps bis zu einem leeren Teilbaum.

Beispiele mit den oben definierten Heaps:
size Empty = 0N

size ex1 = 3N

size ex3 = 2N

height Empty = 0N

height ex1 = 2N

height ex3 = 2N

let rec size<'a> (root: Heap<'a>): Nat =
match root with
| Empty -> 0N
| Node (left, _, right) -> 1N + size left + size right

let rec height<'a> (root: Heap<'a>): Nat =
match root with
| Empty -> 0N
| Node (left, _, right) -> 1N + max (height left) (height right)

3

b) Schreiben Sie eine Funktion isHeap: Heap<'a> -> bool, die überprüft ob der gegebene Heap die Heap-
Bedingung erfüllt.

Beispiele:
isHeap<Nat> Empty = true

isHeap ex1 = true

isHeap ex2 = true

isHeap ex3 = true

isHeap inv1 = false

isHeap inv2 = false

let isHeap<'a when 'a: comparison > (root: Heap<'a>): Bool =
let rec isHeapMin (s: 'a) (root: Heap<'a>): Bool =

match root with
| Empty -> true
| Node (left, x, right) -> x >= s && isHeapMin x left && isHeapMin x right

match root with
| Empty -> true
| Node (left, x, right) -> isHeapMin x left && isHeapMin x right

// Alternativ: Disjunktives Muster und Einschränkung mit when
// Zuerst wird das erste Muster (Empty) abgeglichen.
// Wenn es nicht passt wird Node (x, Node (y, _, _), _) abgeglichen und x > y geprüft.
// Wenn das Muster nicht passt oder die Bedingung nicht erfüllt war,
// dann wird Node (x, _, Node (y, _, _) abgeglichen und wieder x > y geprüft.
// Falls bislang kein Muster gepasst hat oder die Bedingungen nicht erfüllt waren
// wird das letzte Muster (Node (_, left, right)) abgeglichen.
let rec isHeap'<'a when 'a: comparison > (root: Heap<'a>): Bool =

match root with
| Empty -> true
| Node (Node (_, y, _), x, _) | Node (_, x, Node (_, y, _)) when x > y -> false
| Node (left, _, right) -> isHeap' left && isHeap' right

c) Schreiben Sie eine Funktion head: Heap<'a> -> Option<'a>, die aus einem Heap das kleinste Element
bestimmt. Da der Heap leer sein kann, verwenden wir wieder den Option-Typ. Das heißt, wenn der Heap
leer ist, soll None zurückgegeben werden.

Sie können davon ausgehen, dass der gegebene Heap die Heap-Bedingung erfüllt.

Beispiel: head ex1 = Some 2N

let head<'a> (root: Heap<'a>): Option<'a> =
match root with
| Empty -> None
| Node (_, x, _) -> Some x

4

d) Schreiben Sie eine Funktion merge: Heap<'a> -> Heap<'a> -> Heap<'a>, die zwei gegebene Heaps in
einen Heap zusammenführt. Nutzen Sie für Ihre Implementierung den folgenden Algorithmus1:

• Wenn einer der beiden gegebenen Heaps leer ist, dann ist das
Ergebnis der jeweils andere Heap.

• Ansonsten wähle als p den gegebenen Heap mit dem kleineren
head und als q den anderen gegebenen Heap. Konstruiere den
Ergebnis-Heap r als Node wie folgt:

– Die erste Komponente (der Eintrag) von r ist head p.

– Die zweite Komponente (linker Teilbaum) von rwird berech-
net, indem q und der rechte Teilbaum von p rekursiv zusam-
mengeführt werden.

– Die dritte Komponente (rechter Teilbaum) von r ist der linke
Teilbaum von p.

Die Abbildung rechts verdeutlicht den Algorithmus nochmals.
Kreise sind Knoten und Dreiecke sind (Teil-)Bäume. Der blau
umrandete Teil ist p. Der Baum C ist q.

merge

x

A B

C

⇓

x

merge

C B

A

Beispiel: merge ex1 ex2 = Node(
Node(
Node(Node(Empty,5N,Empty), 4N, Empty),
3N,
Node(Empty,7N,Empty)),

2N,
Node(Empty,6N,Empty))

let rec merge<'a when 'a: comparison > (root1: Heap<'a>) (root2: Heap<'a>): Heap<'a> =
match (root1, root2) with
| (Empty, t) | (t, Empty) -> t
| (Node (l1, x1, r1), Node (l2, x2, r2)) ->

let join x l r t = Node (merge t r, x, l)
if x1 <= x2 then join x1 l1 r1 root2
else join x2 l2 r2 root1

Tipp: Die merge Funktion können Sie gut in den weiteren Teilaufgaben verwenden.

e) Schreiben Sie eine Funktion tail: Heap<'a> -> Heap<'a>, die aus einem Heap das kleinste Element ent-
fernt und einen gültigen Heap zurückgibt, der aus den restlichen Elementen besteht. Ist der Heap leer,
soll der leere Heap wieder zurückgegeben werden. Sie können davon ausgehen, dass der gegebene Heap
die Heap-Bedingung erfüllt.

Beispiel: tail ex3 = Node(Empty,1N,Empty)

let tail<'a when 'a: comparison > (root: Heap<'a>): Heap<'a> =
match root with
| Empty -> Empty
| Node (left, _, right) -> merge left right

1Skew Heap Verschmelzung, siehe https://de.wikipedia.org/wiki/Skew_Heap

5

https://de.wikipedia.org/wiki/Skew_Heap

f) Schreiben Sie eine Funktion insert: Heap<'a> -> 'a -> Heap<'a>, die in den gegebenen Heap das gege-
bene Element einfügt. Sie können davon ausgehen, dass der gegebene Heap die Heap-Bedingung erfüllt.
Der Ergebnis-Heap muss die Heap-Bedingung erfüllen. Tipp: Verwenden Sie Ihre merge Funktion!

Beispiel: insert Empty 3N = Node(Empty,3N,Empty)

let insert<'a when 'a: comparison > (root: Heap<'a>) (x: 'a): Heap<'a> =
merge root (Node (Empty, x, Empty))

g) Schreiben Sie Funktionen ofList: List<'a> -> Heap<'a> und toList: Heap<'a> -> List<'a>. Erstere
nimmt eine Liste und erstellt einen gültigen Heap, der die Elemente der Liste enthält. Die Funkti-
on toList nimmt einen gültigen Heap und erstellt daraus eine sortierte Liste der Elemente des Heaps.

Beispiele:
ofList<Nat> [] = Empty

ofList [3N] = Node(Empty,3N,Empty)

toList<Nat> Empty = []

toList ex1 = [2N; 4N; 6N]

toList ex2 = [3N; 5N; 7N]

let rec ofList<'a when 'a: comparison > (xs: List<'a>): Heap<'a> =
match xs with
| [] -> Empty
| x::xs' -> insert (ofList xs') x

let rec toList<'a when 'a: comparison > (root: Heap<'a>): List<'a> =
match root with
| Empty -> []
| Node (left, x, right) -> x :: toList (merge left right)

// oder mit head und tail:
let rec toList'<'a when 'a: comparison > (root: Heap<'a>): List<'a> =

match head root with
| None -> []
| Some x -> x :: toList' (tail root)

h) Schreiben Sie eine Funktion heapsort: List<'a> -> List<'a>, die eine Liste von Elementen nimmt und
diese sortiert. Verwenden Sie dazu die beiden Funktionen aus der vorherigen Teilaufgabe.

Beispiele: heapsort<Nat> [] = [] heapsort [2N; 3N; 1N; 2N] = [1N; 2N; 2N; 3N]

Wenn Sie die Funktion merge wie vorgesehen implementiert haben und in den anderen Funktionen sinn-
voll verwenden, dann sollten Sie Listen der Länge n mit höchstens 2 ∗ n ∗ log2(n) Vergleichen sortieren
können. Dies wird durch den Testfall heapsort Zufall Effizienz abgeprüft.

let heapsort <'a when 'a: comparison > (xs: List<'a>): List<'a> =
toList (ofList xs)

6

Aufgabe 3 Turtle-Grafik (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie noch einmal den Umgang mit Listen einüben. Sie können sich an
den Vorlesungsfolien 379 bis 404 sowie am Skript Kapitel 4.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Turtle.fs aus der Vorlage Aufgabe-6-3.zip.

Als Turtle-Grafik wird eine Bildbeschreibungssprache verstanden, bei der man sich vorstellt, dass eine mit
einem Stift ausgestattete Schildkröte (oder ein Roboter) sich über eine Zeichenebene bewegt. Die Schild-
kröte versteht verschiedene Kommandos, mit deren Hilfe sich ganze Programme zusammensetzen lassen,
um ein Bild zu erstellen.

Dazu verwenden wir folgende Typen:

type Command =
| D // Drop: Stift absetzen/anfangen zu zeichnen
| F of Double // Forward: Vorwärts bewegen
| L of Double // Left: Nach links/gegen den Uhrzeigersinn drehen

type Program = List<Command>

Hinweis: Anders als sonst, arbeiten wir in dieser Aufgabe nicht mit natürlichen Zahlen. Stattdessen ver-
wenden wir den Typ Double, um mit Fließkommazahlen zu arbeiten. Wenn Sie eine Zahl vom Typ Double
angeben, müssen Sie darauf achten, den Dezimaltrenner mit anzugeben. Zum Beispiel wäre 2 eine Ganzzahl
vom Typ Int, jedoch 2.0 eine Fließkommazahl.

Damit wir die Turtle-Grafiken auch tatsächlich betrachten können, ist in der Programmvorlage das Modul
Draw enthalten, das Turtle-Grafiken in SVG-Bilder umwandeln kann. Sie können SVG-Dateien mit allen
gängigen Webbrowsern öffnen. Im Draw-Modul gibt es eine Funktion draw, die ein Turtle-Programm als Ar-
gument erwartet und daraus eine SVG-Datei mit dem Namen image.svg im aktuellen Verzeichnis generiert.
Das zu konvertierende Programm können Sie in der main Funktion auswählen und das gesamte Programm
mit dem Befehl dotnet run ausführen.

Folgendes Turtle-Programm wird damit wie in Abbildung 1 dargestellt, in eine Grafik überführt.

let ex = [D; F 50.0; L 45.0; F 50.0]

50

Start

Abbildung 1: Darstellung des Programms Turtle.ex. Initial ist unsere Schildkröte nach rechts ausgerichtet.
Sie setzt den Stift ab, bewegt sich um 50 Längeneinheiten vorwärts, dreht sich um 45 Grad
nach links (gegen den Uhrzeigersinn) und bewegt sich erneut um 50 Längeneinheiten vor-
wärts.

Die Schildkröte startet ohne abgesetzten Stift und ist nach rechts ausgerichtet.

7

a) Implementieren Sie einen „smarten Konstruktor“ (eine Funktion, die den Konstruktor eines bestimmten
Typs aufruft und dabei ggf. noch zusätzliche Prüfungen durchführt, die das Typsystem nicht durchführen
kann - das tun wir hier jedoch nicht), der ein Element des Typs Command zurückgibt, das eine Drehung
um den Winkel angle nach rechts modelliert.

Tipp: Eine Drehung nach rechts entspricht einer Drehung nach links um einen Winkel mit negativem
Vorzeichen.

let right (angle: Double): Command = L (- angle)

b) Unsere Turtle-Programme eröffnen uns eine spannende Möglichkeit: Wir können Teile eines gegebe-
nen Programms p anhand bestimmter Regeln ersetzen. Wir betrachten hier die Funktion substF, die alle
Vorkommen der Vorwärtsbewegung F ersetzt. Implementieren Sie die Funktion substF und rufen Sie die
Funktion transformF: Double -> Program mit der Länge des jeweiligen F Konstruktors auf, um die Sub-
stitution durchzuführen. Die Transformationsfunktion transformF arbeitet mit der Länge des bisherigen
F Segments. So ist es möglich, Längenverhältnisse in der Transformationsfunktion zu berücksichtigen.

let rec substF (transformF: Double -> Program) (p: Program): Program =
match p with
| [] -> []
| (F len)::ps -> transformF len @ substF transformF ps
| cmd::ps -> cmd::(substF transformF ps)

c) Lévy-C-Kurve Wir starten mit einer geraden Linie der Länge s. Implementieren Sie dazu die Funktion
levyStart, die den Stift absetzt und diesen um die Länge len vorwärts bewegt.

Schreiben Sie nun eine Transformation levyTransform, welche eine Vorwärtsbewegung um die Länge
len ersetzt durch

1. eine Drehung nach links um 45◦

2. eine Vorwärtsbewegung der Länge len/
√

2

3. eine Drehung nach rechts um 90◦

4. eine Vorwärtsbewegung der Länge len/
√

2

5. und noch eine Drehung nach links um 45◦.

In den folgenden Aufgabenteilen verwenden wir dafür Abkürzugen:

• Den Buchstaben F für eine Vorwärtsbewegung (Skalierungsfaktor beachten)

• + für eine Drehung nach links, also gegen den Uhrzeigersinn (Winkel beachten)

• - für eine Drehung im Uhrzeigersinn (Winkel beachten)

• -> gibt an, dass das links vom Pfeil ersetzt wird durch das, was rechts davon steht

Im vorliegenden Fall der Lévy-C-Kurve wäre die Kurzschreibweise für die Transformation F -> +F--F+,
wobei das Längenverhältnis (vor Transformation vs nach Transformation) 1 : 1/

√
2 beträgt. + und -

ändern den Winkel jeweils um 45◦ gegen den bzw. im Uhrzeigersinn.

Hinweis: In der main Funktion des DrawModuls wird mit Hilfe der Funktion iterate die Transformation
n mal angewendet.

Hinweis: Sie können die Funktion sqrt zur Berechnung der Quadratwurzel verwenden.

8

Abbildung 2: Lévy-C-Kurve, 12 Iterationen

// F
let levyStart (len: Double) = [D; F len]

// +F--F+
let levyTransform (len: Double): Program =

let l = len / sqrt(2.0)
[L 45.0; F l; right 90.0; F l; L 45.0]

d) Implementieren Sie die Funktionen kochflockeStart und kochflockeTransform. Die Symbole + und -
ändern den Winkel um 60◦. kochflockeStart soll mit der Sequenz F--F--F ein Dreieck zeichnen.

kochflockeTransform soll die Transformationsregel F -> F+F--F+F implementieren. Das Längenverhältnis
beträgt dabei 1 : 1/3.

Abbildung 3: Koch-Flocke, 4 Iterationen

// F--F--F
let kochflockeStart (len: Double) =

let a = 60.0
[D; F len
; right (2.0*a); F len
; right (2.0*a); F len]

// F -> F+F--F+F
let kochflockeTransform (len: Double): Program =

let l = len / 3.0
let a = 60.0
let flf = [F l; L a; F l]
flf @ [right (2.0*a)] @ flf

9

e) Implementieren Sie die Funktionen pentaplexityStart und pentaplexityTransform. Die Symbole + und
- ändern den Winkel um 36◦. pentaplexityStart soll mit der Sequenz F++F++F++F++F ein Pentagon zeich-
nen.

pentaplexityTransform soll die Transformationsregel F -> F++F++F|F-F++F implementieren. Das Symbol
| repräsentiert eine Drehung um 180◦. Das Längenverhältnis beträgt 1 : 1/ϕ2, wobei ϕ := 1+

√
5

2 .

Abbildung 4: Penta Plexity, 3 Iterationen

// F++F++F++F++F
let pentaplexityStart (len: Double) =

let a = 36.0
let lf = [L (2.0*a); F len]
[D; F len] @ lf @ lf @ lf @ lf

// F -> F++F++F|F-F++F
let pentaplexityTransform (len: Double): Program =

let phi = (1.0 + sqrt 5.0) / 2.0
let l = len / (phi ** 2.0)
let a = 36.0
[F l; L (2.0*a); F l

; L (2.0*a); F l
; L 180.0; F l
; right a; F l
; L (2.0*a); F l]

10

	Binärbäume (Präsenzaufgabe)
	Heaps (Einreichaufgabe, 14 Punkte)
	Turtle-Grafik (Trainingsaufgabe)

