Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Fachbereich Informatik

Losungshinweise/-vorschlage zum
Ubungsblatt 6: Konzepte der Programmierung (WS 2025/26)

Probeklausur Sie konnen sich ab sofort im ExClaim System fiir die Probeklausur am 16.12.2025 anmel-
den. Klicken Sie dazu unten auf der “KdP25” Seite bei der Probeklausur auf den Button “anmelden”. Die
Anmeldung schliefit am 10.12.2025 um 23:59 Uhr.

Aufgabe 1 Binarbaume (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie iiben mit komplexeren rekursiven Varianten zu programmieren.
Sie konnen sich an den Vorlesungsfolien 512 bis 526 sowie am Skript Kapitel 5.2.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Tree. fs aus der Vorlage Aufgabe-6-1.zip.

Bisher sind Ihnen in erster Linie Listen als Beispiel fiir rekursive Variantentypen begegnet. Es ist jedoch
auch moglich mit Hilfe rekursiver Varianten komplexere Datenstrukturen zu konstruieren. Wir werden in
dieser Aufgabe exemplarisch den Typ der Bdume betrachten:

type Tree<'a> =
| Leaf // Blatt
| Node of Tree<'a> * 'a * Tree<'a> // Knoten

Ein Baum (Tree) besteht entweder aus einem Blatt (Leaf) oder aus einem Knoten (Node), welcher einen
linken Teilbaum, ein Element und einen rechten Teilbaum hat.

Abgesehen von der Struktur der Konstruktoren stellen wir in dieser Aufgabe keine weiteren Anforderungen
an den Baum. Sie haben in der Vorlesung bereits Biume kennengelernt, die durch Hinzunahme bestimmter
Invarianten niitzliche Eigenschaften erhalten, mit deren Hilfe sich z. B. Suchalgorithmen effizient imple-
mentieren lassen.

Bei den Teilaufgaben verwenden wir folgenden Beispielbaum:

let ex = Node (Node (Leaf, 1N, (Node (Leaf, 2N, Leaf))), 3N, (Node (Leaf, 4N, Leaf)))

a) Schreiben Sie eine Funktion countLeaves, welche die Anzahl der Blitter in einem Baum zuriickgibt.

b)

Beispiele:

countLeaves Leaf = 1IN countLeaves ex = 5N

let rec countleaves<'a> (t: Tree<'a>): Nat =
match t with
| Leaf -> 1IN
| Node (1, _, r) -> countLeaves 1 + countlLeaves r

Wir folgen dem Struktur Entwurfsmuster: Elemente des Typs Tree<'a> konnen nur mit den Konstruk-
toren Leaf und Node konstruiert werden, mit match fithren wir den Musterabgleich durch. Liegt ein
Blatt vor, wird 1N zuriickgegeben (hier kann es insbesondere keinen rekursiven Aufruf mehr geben,
da ein Blatt nach Konstruktion keine Kindelemente haben kann). Falls ein Knoten vorliegt, erhoht sich
die Anzahl der Blitter nicht, wir konnen uns vorstellen, dass 6§ zur Summe der rekursiven Aufrufe
hinzuaddiert wird.

Schreiben Sie eine Funktion height, welche die Hohe eines Baumes berechnet.
Beispiele:

height Leaf = ON height ex = 3N

let rec height<'a> (t: Tree<'a>): Nat =
match t with
| Leaf -> ON
| Node (1, _, r) -> 1IN + max (height 1) (height r)

Ein einzelnes Blatt hat die Hohe 0, ein Knoten die Hohe 1. Da die maximale Hohe gesucht ist, be-
rechnen wir, sofern ein Knoten vorliegt, das Maximum der Hohen des linken und rechten Teilbaums.

Schreiben Sie eine Funktion map, die eine Funktion auf alle Knotenelemente eines Baums anwendet.

Beispiele:

map (fun x -> x * 2N) Leaf = Leaf
map (fun x -> x * 2N) ex = Node (Node (Leaf, 2N, (Node (Leaf, 4N, Leaf)))
, 6N, (Node (Leaf, 8N, Leaf)))

let rec map<'a, 'b> (f: 'a -> 'b) (t: Tree<'a>): Tree<'b> =
match t with
| Leaf -> Leaf
| Node (1, x, r) -> Node (map £ 1, f x, map f r)

Wenn ein Knoten vorliegt, wenden wir £ auf das Knotenelement an und rufen map rekursiv auf den
Teilbdume auf.

Aufgabe 2 Heaps (Einreichaufgabe, 14 Punkte)

Motivation: In dieser Aufgabe sollen Sie iiben mit komplexeren rekursiven Varianten zu programmieren.
Sie konnen sich an den Vorlesungsfolien 512 bis 525 sowie am Skript Kapitel 5.2.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Heaps. fs aus der Vorlage Aufgabe-6-2.zip.

Ein Heap ist eine Datenstruktur in Form eines Bindrbaums: Ein Heap ist entweder leer oder ein Knoten mit
einem Eintrag, einem linken Teilbaum und einem rechten Teilbaum. Die Datenstruktur dient dazu, Elemente
partiell geordnet abzuspeichern. Daher muss ein giiltiger Heap die Heap-Bedingung erfiillen: Der Eintrag
jedes Knotens muss kleiner oder gleich der Eintriige seiner beiden Teilbdumen sein.

type Heap<'a> =
| Empty
| Node of Heap<'a> * 'a * Heap<'a>

Beispiele fiir giiltige Heaps:

let ex1 = Node(Node(Empty,6N,Empty), 2N, Node(Empty,4N,Empty))
let ex2 = Node(Node(Empty,7N,Empty), 3N, Node(Empty,5N,Empty))
let ex3 = Node(Node(Empty,1N,Empty), 1N, Empty)

Beispiele fiir ungiiltige Heaps:
let invl = Node(Node(Empty,2N,Empty), 3N, Empty)
let inv2 = Node(Node(Node(Empty,4N,Empty), 5N, Empty), 3N, Empty)

a) Schreiben Sie Funktionen size und height jeweils vom Typ Heap<'a> -> Nat, die die Grofe bzw. Hohe
eines Heaps berechnen. Die Grofe entspricht der Anzahl an Eintrdgen. Die Hohe ist die Lange des
langsten Pfades von der Wurzel des Heaps bis zu einem leeren Teilbaum.

Beispiele mit den oben definierten Heaps:

size Empty = ON size ex3 = 2N height exl = 2N
size exl = 3N height Empty = ON height ex3 = 2N
let rec size<'a> (root: Heap<'a>): Nat =

match root with

| Empty -> ON

| Node (left, _, right) -> 1N + size left + size right
let rec height<'a> (root: Heap<'a>): Nat =

match root with

| Empty -> ON

| Node (left, _, right) -> 1IN + max (height left) (height right)

b) Schreiben Sie eine Funktion isHeap: Heap<'a> -> bool, die iiberpriift ob der gegebene Heap die Heap-
Bedingung erfiillt.

Beispiele:
isHeap<Nat> Empty = true isHeap ex2 = true isHeap invl = false
isHeap exl = true isHeap ex3 = true isHeap inv2 = false

let isHeap<'a when 'a: comparison> (root: Heap<'a>): Bool =
let rec isHeapMin (s: 'a) (root: Heap<'a>): Bool =
match root with
| Empty -> true
| Node (left, x, right) -> x >= s && isHeapMin x left && isHeapMin x right
match root with
| Empty -> true
| Node (left, x, right) -> isHeapMin x left && isHeapMin x right

// Alternativ: Disjunktives Muster und Einschrankung mit when
// Zuerst wird das erste Muster (Empty) abgeglichen.
// Wenn es nicht passt wird Node (x, Node (y, _, _), _) abgeglichen und x > y gepruft.
// Wenn das Muster nicht passt oder die Bedingung nicht erfallt war,
// dann wird Node (x, _, Node (y, _, _) abgeglichen und wieder x > y geprift.
// Falls bislang kein Muster gepasst hat oder die Bedingungen nicht erfullt waren
// wird das letzte Muster (Node (_, left, right)) abgeglichen.
let rec isHeap'<'a when 'a: comparison> (root: Heap<'a>): Bool =
match root with
| Empty -> true
| Node (Node (_, y,), x, _) | Node (_, x, Node (_, y, _)) when x > y -> false
| Node (left, _, right) -> isHeap' left && isHeap' right

¢) Schreiben Sie eine Funktion head: Heap<'a> -> Option<'a>, die aus einem Heap das kleinste Element
bestimmt. Da der Heap leer sein kann, verwenden wir wieder den option-Typ. Das heifit, wenn der Heap
leer ist, soll None zuriickgegeben werden.

Sie konnen davon ausgehen, dass der gegebene Heap die Heap-Bedingung erfiillt.

Beispiel: head exl = Some 2N

let head<'a> (root: Heap<'a>): Option<'a> =
match root with
| Empty -> None
| Node (_, x, _) -> Some X

d) Schreiben Sie eine Funktion merge: Heap<'a> -> Heap<'a> -> Heap<'a>, die zwei gegebene Heaps in
einen Heap zusammenfiihrt. Nutzen Sie fiir Ihre Implementierung den folgenden Algorithmus':

e Wenn einer der beiden gegebenen Heaps leer ist, dann ist das merge
Ergebnis der jeweils andere Heap.

e Ansonsten wihle als p den gegebenen Heap mit dem kleineren
head und als q den anderen gegebenen Heap. Konstruiere den
Ergebnis-Heap r als Node wie folgt:

— Die erste Komponente (der Eintrag) von r ist head p. S -

— Die zweite Komponente (linker Teilbaum) von r wird berech- ,U,
net, indem g und der rechte Teilbaum von p rekursiv zusam-
mengefiihrt werden.

— Die dritte Komponente (rechter Teilbaum) von r ist der linke
Teilbaum von p. merge A

Die Abbildung rechts verdeutlicht den Algorithmus nochmals. e I
Kreise sind Knoten und Dreiecke sind (Teil-)Bdume. Der blau
umrandete Teil ist p. Der Baum C ist q.

Beispiel: merge exl ex2 = Node(
Node (
Node (Node (Empty,5N,Empty), 4N, Empty),
3N,
Node (Empty,7N,Empty)),
2N,
Node (Empty,6N,Empty))

let rec merge<'a when 'a: comparison> (rootl: Heap<'a>) (root2: Heap<'a>): Heap<'a> =
match (rootl, root2) with
| (Empty, t) | (t, Empty) -> t
| (Node (11, x1, rl), Node (12, x2, r2)) ->
let join x 1 r t = Node (merge t r, x, 1)
if x1 <= x2 then join x1 11 rl root2
else join x2 12 r2 rootl

Tipp: Die merge Funktion konnen Sie gut in den weiteren Teilaufgaben verwenden.

e) Schreiben Sie eine Funktion tail: Heap<'a> -> Heap<'a>, die aus einem Heap das kleinste Element ent-
fernt und einen giiltigen Heap zuriickgibt, der aus den restlichen Elementen besteht. Ist der Heap leer,
soll der leere Heap wieder zuriickgegeben werden. Sie konnen davon ausgehen, dass der gegebene Heap
die Heap-Bedingung erfiillt.

Beispiel: tail ex3 = Node(Empty, IN,Empty)

let tail<'a when 'a: comparison> (root: Heap<'a>): Heap<'a> =
match root with
| Empty -> Empty
| Node (left, _, right) -> merge left right

'Skew Heap Verschmelzung, siehe https://de.wikipedia.org/wiki/Skew_Heap

https://de.wikipedia.org/wiki/Skew_Heap

f) Schreiben Sie eine Funktion insert: Heap<'a> -> 'a -> Heap<'a>, die in den gegebenen Heap das gege-

g

h)

bene Element einfiigt. Sie konnen davon ausgehen, dass der gegebene Heap die Heap-Bedingung erfiillt.
Der Ergebnis-Heap muss die Heap-Bedingung erfiillen. Tipp: Verwenden Sie Ihre merge Funktion!

Beispiel: insert Empty 3N = Node(Empty,3N,Empty)

let insert<'a when 'a: comparison> (root: Heap<'a>) (x: 'a): Heap<'a> =
merge root (Node (Empty, x, Empty))

Schreiben Sie Funktionen ofList: List<'a> -> Heap<'a> und tolList: Heap<'a> -> List<'a>. Erstere
nimmt eine Liste und erstellt einen giiltigen Heap, der die Elemente der Liste enthilt. Die Funkti-
on toList nimmt einen giiltigen Heap und erstellt daraus eine sortierte Liste der Elemente des Heaps.

Beispiele: toList<Nat> Empty = []
ofList<Nat> [] = Empty toList exl = [2N; 4N; 6N]
ofList [3N] = Node(Empty,3N,Empty) toList ex2 = [3N; 5N; 7N]

let rec oflList<'a when 'a: comparison> (xs: List<'a>): Heap<'a> =
match xs with
| [1 -> Empty

| x::xs' -> insert (ofList xs') x

let rec tolList<'a when 'a: comparison> (root: Heap<'a>): List<'a> =
match root with
| Empty -> []
| Node (left, x, right) -> x :: tolList (merge left right)

// oder mit head und tail:

let rec tolList'<'a when 'a: comparison> (root: Heap<'a>): List<'a> =
match head root with
| None -> []
| Some x -> x :: tolList' (tail root)

Schreiben Sie eine Funktion heapsort: List<'a> -> List<'a>, die eine Liste von Elementen nimmt und
diese sortiert. Verwenden Sie dazu die beiden Funktionen aus der vorherigen Teilaufgabe.

Beispiele: heapsort<Nat> [] = [] heapsort [2N; 3N; 1IN; 2N] = [1N; 2N; 2N; 3N]
Wenn Sie die Funktion merge wie vorgesehen implementiert haben und in den anderen Funktionen sinn-

voll verwenden, dann sollten Sie Listen der Linge n mit hochstens 2 * n * log,(n) Vergleichen sortieren
konnen. Dies wird durch den Testfall heapsort Zufall Effizienz abgepriift.

let heapsort<'a when 'a: comparison> (xs: List<'a>): List<'a> =
toList (ofList xs)

Aufgabe 3 Turtle-Grafik (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie noch einmal den Umgang mit Listen einiiben. Sie kdnnen sich an
den Vorlesungsfolien 379 bis 404 sowie am Skript Kapitel 4.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei Turtle. fs aus der Vorlage Aufgabe-6-3.zip.

Als Turtle-Grafik wird eine Bildbeschreibungssprache verstanden, bei der man sich vorstellt, dass eine mit
einem Stift ausgestattete Schildkrote (oder ein Roboter) sich iiber eine Zeichenebene bewegt. Die Schild-
krote versteht verschiedene Kommandos, mit deren Hilfe sich ganze Programme zusammensetzen lassen,
um ein Bild zu erstellen.

Dazu verwenden wir folgende Typen:

type Command =

| D // Drop: Stift absetzen/anfangen zu zeichnen
| F of Double // Forward: Vorwdrts bewegen
| L of Double // Left: Nach links/gegen den Uhrzeigersinn drehen

type Program = List<Command>

Hinweis: Anders als sonst, arbeiten wir in dieser Aufgabe nicht mit natiirlichen Zahlen. Stattdessen ver-
wenden wir den Typ Double, um mit FlieBkommazahlen zu arbeiten. Wenn Sie eine Zahl vom Typ Double
angeben, miissen Sie darauf achten, den Dezimaltrenner mit anzugeben. Zum Beispiel wire 2 eine Ganzzahl
vom Typ Int, jedoch 2.6 eine FlieBkommazahl.

Damit wir die Turtle-Grafiken auch tatsidchlich betrachten konnen, ist in der Programmvorlage das Modul
Draw enthalten, das Turtle-Grafiken in SVG-Bilder umwandeln kann. Sie konnen SVG-Dateien mit allen
gingigen Webbrowsern 6ffnen. Im Draw-Modul gibt es eine Funktion draw, die ein Turtle-Programm als Ar-
gument erwartet und daraus eine SVG-Datei mit dem Namen image.svg im aktuellen Verzeichnis generiert.
Das zu konvertierende Programm konnen Sie in der main Funktion auswihlen und das gesamte Programm
mit dem Befehl dotnet run ausfiihren.

Folgendes Turtle-Programm wird damit wie in Abbildung 1 dargestellt, in eine Grafik tiberfiihrt.

let ex = [D; F 50.0; L 45.0; F 50.0]

Start

H/_J

50

Abbildung 1: Darstellung des Programms Turtle.ex. Initial ist unsere Schildkréte nach rechts ausgerichtet.
Sie setzt den Stift ab, bewegt sich um 50 Lingeneinheiten vorwirts, dreht sich um 45 Grad
nach links (gegen den Uhrzeigersinn) und bewegt sich erneut um 50 Lingeneinheiten vor-
warts.

Die Schildkrote startet ohne abgesetzten Stift und ist nach rechts ausgerichtet.

a) Implementieren Sie einen ,,smarten Konstruktor (eine Funktion, die den Konstruktor eines bestimmten

b)

Typs aufruft und dabei ggf. noch zusitzliche Priifungen durchfiihrt, die das Typsystem nicht durchfithren
kann - das tun wir hier jedoch nicht), der ein Element des Typs Command zuriickgibt, das eine Drehung
um den Winkel angle nach rechts modelliert.

Tipp: Eine Drehung nach rechts entspricht einer Drehung nach links um einen Winkel mit negativem
Vorzeichen.

let right (angle: Double): Command = L (- angle)

Unsere Turtle-Programme er6ffnen uns eine spannende Moglichkeit: Wir konnen Teile eines gegebe-
nen Programms p anhand bestimmter Regeln ersetzen. Wir betrachten hier die Funktion substF, die alle
Vorkommen der Vorwértsbewegung F ersetzt. Implementieren Sie die Funktion substF und rufen Sie die
Funktion transformF: Double -> Program mit der Linge des jeweiligen F Konstruktors auf, um die Sub-
stitution durchzufiihren. Die Transformationsfunktion transformF arbeitet mit der Linge des bisherigen
F Segments. So ist es moglich, Langenverhiltnisse in der Transformationsfunktion zu beriicksichtigen.

let rec substF (transformF: Double -> Program) (p: Program): Program =
match p with

| [1] -> [1
| (F len)::ps -> transformF len @ substF transformF ps
| cmd::ps -> cmd:: (substF transformF ps)

Lévy-C-Kurve Wir starten mit einer geraden Linie der Lénge s. Implementieren Sie dazu die Funktion
levyStart, die den Stift absetzt und diesen um die Lénge len vorwirts bewegt.

Schreiben Sie nun eine Transformation levyTransform, welche eine Vorwirtsbewegung um die Linge
len ersetzt durch

1. eine Drehung nach links um 45°

2. eine Vorwirtsbewegung der Linge len/ V2
3. eine Drehung nach rechts um 90°

4. eine Vorwirtsbewegung der Linge len/ V2
5. und noch eine Drehung nach links um 45°.

In den folgenden Aufgabenteilen verwenden wir dafiir Abkiirzugen:

e Den Buchstaben F fiir eine Vorwértsbewegung (Skalierungsfaktor beachten)
o -+ fiir eine Drehung nach links, also gegen den Uhrzeigersinn (Winkel beachten)
o - fiir eine Drehung im Uhrzeigersinn (Winkel beachten)

e > gibt an, dass das links vom Pfeil ersetzt wird durch das, was rechts davon steht

Im vorliegenden Fall der Lévy-C-Kurve wire die Kurzschreibweise fiir die Transformation F -> +F--F+,
wobei das Langenverhéltnis (vor Transformation vs nach Transformation) 1 : 1/ \2 betrdgt. + und -
dndern den Winkel jeweils um 45° gegen den bzw. im Uhrzeigersinn.

Hinweis: In der main Funktion des braw Moduls wird mit Hilfe der Funktion iterate die Transformation
n mal angewendet.

Hinweis: Sie konnen die Funktion sqrt zur Berechnung der Quadratwurzel verwenden.

d)

Abbildung 2: Lévy-C-Kurve, 12 Iterationen

// F
let levyStart (len: Double) = [D; F len]

// +F--F+

let levyTransform (len: Double): Program =
let 1 = len / sqrt(2.0)
[L 45.0; F 1; right 90.0; F 1; L 45.0]

Implementieren Sie die Funktionen kochflockeStart und kochflockeTransform. Die Symbole + und -
dndern den Winkel um 60°. kochflockeStart soll mit der Sequenz F--F--F ein Dreieck zeichnen.

kochflockeTransform soll die Transformationsregel F -> F+F--F+F implementieren. Das Langenverhiltnis
betrdgt dabei 1 : 1/3.

Abbildung 3: Koch-Flocke, 4 Iterationen

// F--F--F
let kochflockeStart (len: Double) =
let a = 60.0
[D; F len
; right (2.0%a); F len
; right (2.0%a); F len]

// F -> F+F--F+F
let kochflockeTransform (len: Double): Program =
let 1 = len / 3.0
let a = 60.0
let f1f = [F 1; L a; F 1]
fl1f @ [right (2.0%a)] @ flf

e) Implementieren Sie die Funktionen pentaplexityStart und pentaplexityTransform. Die Symbole + und
- dndern den Winkel um 36°. pentaplexityStart soll mit der Sequenz F++F++F++F++F ein Pentagon zeich-
nen.

pentaplexityTransform soll die Transformationsregel F -> F++F++F|F-F++F implementieren. Das Symbol
| reprisentiert eine Drehung um 180°. Das Lingenverhéltnis betriigt 1 : 1/¢?, wobei ¢ := #

YOS ST
tt“"’o".‘"..‘"."'

ﬂo'o'qd(g:

Abbildung 4: Penta Plexity, 3 Iterationen

// F++F++F++F++F

let pentaplexityStart (len: Double) =
let a = 36.0
let 1f = [L (2.0*%a); F len]
[D; F len] @ 1f @ 1f @ 1f @ 1f

// F -> F++F++F|F-F++F
let pentaplexityTransform (len: Double): Program =
let phi = (1.0 + sqrt 5.0) / 2.0

let 1 = len / (phi ** 2.0)
let a = 36.0
[F1; L (2.0%a); F 1

; L (2.0%a); F 1

; L 180.0; F1

; right a; F1

; L (2.0%a); F 1]

10

	Binärbäume (Präsenzaufgabe)
	Heaps (Einreichaufgabe, 14 Punkte)
	Turtle-Grafik (Trainingsaufgabe)

