Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik
Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 7: Konzepte der Programmierung (WS 2025/26)

Aufgabe 1 Regulare Ausdriicke (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit Funktionen héherer Ordnung auf Listen beschiftigen. Sie
konnen sich an den Vorlesungsfolien 547 bis 582 bzw. am Skript Kapitel 6.1 orientieren.

a) Leiten Sie das Wort ab aus dem reguldren Ausdruck (a|b) | (a|b)* ab. Geben Sie die gesamte Redukti-
onsfolge an.

@lb)|(@a|b)*

- (alb)*

— (alb)-(alb)*
—a-(alb)
—a-(alb)-(alb)*
—a-b-(a|b)*
—a-b-e

— ab

b) Geben Sie fiir die folgenden Beschreibungen in natiirlicher Sprache einen reguldren Ausdruck iiber dem
Alphabet {a, b, c} an:

1. Die Sprache, deren Worter aus genau drei Buchstaben bestehen.

I (albfc)-(alblc)-(albfc)

2. Die Sprache, deren Worter genau zwei a enthalten.

| Mdlc)-a-(blc)-a-(b|c)

3. Die Sprache, deren Worter aus einer geraden Anzahl an Buchstaben bestehen.

| @ivio-@ibioy

Aufgabe 2 Endliche Abbildungen | (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie Thr algorithmisches Denken iiben sowie noch einmal mit komple-
xeren rekursiven Varianten zu programmieren. Sie konnen sich an den Vorlesungsfolien 499 bis 542 sowie
am Skript Kapitel 5.3 orientieren.

Schreiben Sie Ihre Losungen in die Datei MapSortedList. fs aus der Vorlage Aufgabe-7-2.zip.

In dieser und der folgenden Aufgabe wollen wir endliche Abbildungen in F# reprisentieren. Unter einer
endlichen Abbildung verstehen wir die Zuordnung von Elementen eines Definitionsbereichs (,,Schliissel*
bzw. keys) zu Elementen einer Zielmenge (,, Werte* bzw. values). Davon ausgehend definieren wir als ab-
strakten Datentyp (vgl. Folie 501) fiir endliche Abbildungen type Map<'k, 'v>, welcher Schliisseln vom Typ
'k Werte vom Typ 'v zuordnet.

In dieser Aufgabe implementieren wir endliche Abbildungen mithilfe von sortierten Listen vom Typ

type MapSortedList<'k, 'v when 'k: comparison> = List<'k * 'v>

Sortiert wird immer nur nach dem Schliissel, in aufsteigender Reihenfolge. Um eine Sortierung anhand der
Schliissel durchzufiihren, miissen wir diese vergleichen kdnnen. Dazu wird when 'k: comparison gefordert.

Hinweis: Sie finden entsprechende Beispiele in den Vorlagen.

Hinweis: Sie diirfen die Standardbibliothek in Ihrer Losung nicht verwenden.

a) Definieren Sie den Wert empty<'k, 'v> vom Typ MapSortedList<'k, 'v>, welcher eine leere Abbildung
darstellt.

let empty<'k, 'v when 'k: comparison> : MapSortedList<'k, 'v> =

[]

b) Schreiben Sie eine Funktion lookup<'k, 'v>: 'k -> MapSortedList<'k, 'v> -> Option<'v>, welche einen
Schliissel und eine Abbildung entgegennimmt und den Wert zuriickgibt, auf den der Schliissel in der Ab-
bildung abgebildet wird. Falls der Schliissel nicht in der Abbildung enthalten ist, soll None zuriickgegeben
werden.

let rec lookup<'k, 'v when 'k: comparison> (key: 'k) (m: MapSortedList<'k, 'v>):
Option<'v> =
match m with
| [-> None
| (k, v)::rest ->
if k = key then Some v
elif key < k then None
else lookup key rest

¢) Schreiben Sie eine Funktion set<'k, 'v>: 'k -> 'v -> MapSortedList<'k, 'v> -> MapSortedList<'k, '

v>, welche einen Schliissel, einen Wert und eine Abbildung entgegennimmt und eine Abbildung zuriick-
gibt, welche den Schliissel auf den Wert abbildet. Alle anderen Schliissel sollen auf die gleichen Werte

wie in der Eingabeabbildung abgebildet werden. Falls der Schliissel bereits in der Abbildung enthalten
ist, soll der Wert {iberschrieben werden.

let rec set<'k, 'v when 'k: comparison> (key: 'k) (value: 'v)
(m: MapSortedList<'k, 'v>): MapSortedList<'k, 'v> =
match m with
| [1 -> [(key, value)]
| (k, v)::rest ->

if k = key then (key, value)::rest
elif key < k then (key, value)::(k, v)::rest
else (k,v)::(set key value rest)

d) Schreiben Sie eine Funktion comma<'k, 'v>: MapSortedList<'k, 'v> -> MapSortedList<'k, 'v> -> MapSortedList
<'k, 'v>, welche den Kommaoperator implementiert. Die Funktion nimmt also zwei Abbildungen und
gibt eine Abbildung zuriick, welche alle Schliissel und Werte aus beiden Abbildungen enthilt. Falls

ein Schliissel in beiden Abbildungen enthalten ist, soll der Wert aus der zweiten Abbildung verwendet
werden.

let rec comma<'k, 'v when 'k: comparison> (ml: MapSortedList<'k, 'v>)

(m2: MapSortedList<'k, 'v>): MapSortedList<'k, 'v> =
match m2 with

| [1 -> ml
| (k, v)::rest -> set k v (comma ml rest)

e) Schreiben Sie eine Funktion delete<'k, 'v>: 'k -> MapSortedList<'k, 'v> -> MapSortedList<'k, 'v>,

welche einen Schliissel und eine Abbildung entgegennimmt und eine Abbildung zuriickgibt, welche alle
Schliissel und Werte aus der Eingabeabbildung enthilt, auler dem Schliissel, der in der Eingabeabbil-

dung auf den Wert abgebildet wird. Falls der Schliissel nicht in der Abbildung enthalten ist, soll die
Eingabeabbildung zuriickgegeben werden.

let rec delete<'k, 'v when 'k: comparison> (key: 'k) (m:
MapSortedList<'k, 'v> =
match m with
[[1 -> [1
| (k, v)::rest ->
if k = key then rest
elif key < k then (k, v)::rest
else (k, v)::(delete key rest)

MapSortedList<'k, 'v>):

Aufgabe 3 Endliche Abbildungen Il (Einreichaufgabe, 11 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Funktionen hoherer Ordnung sowie mit endlichen
Abbildungen iiben.

Dies ist die Fortsetzung von Aufgabe 2.
Schreiben Sie Ihre Losungen in die Datei MapPartialFunction. fs aus der Vorlage Aufgabe-7-3.zip.

In dieser Aufgabe implementieren wir endliche Abbildungen mithilfe von partiellen Funktionen, also Funk-
tionen vom Typ

type MapPartialFunction<'k, 'v> = 'k -> Option<'v>

Hinweis: Sie diirfen die Standardbibliothek in Ihrer Losung nicht verwenden.

a) Definieren Sie den Wert empty<'k, 'v> vom Typ MapPartialFunction<'k, 'v>, welcher eine leere Abbil-
dung darstellt.

let empty<'k,'v> : MapPartialFunction<'k,
fun (_: 'k) -> None

V> =

b) Schreiben Sie eine Funktion lookup<'k, 'v>: 'k -> MapPartialFunction<'k, 'v> -> Option<'v>, welche
einen Schliissel und eine Abbildung entgegennimmt und den Wert zuriickgibt, auf den der Schliissel
in der Abbildung abgebildet wird. Falls der Schliissel nicht in der Abbildung enthalten ist, soll None
zuriickgegeben werden.

let lookup<'k, 'v> (key: 'k) (map: MapPartialFunction<'k, 'v>): Option<'v> =
map key

¢) Schreiben Sie eine Funktion set<'k, 'v>: 'k -> 'v -> MapPartialFunction<'k, 'v> -> MapPartialFunction

<'k, 'v>, welche einen Schliissel, einen Wert und eine Abbildung entgegennimmt und eine Abbildung
zurlickgibt, welche den Schliissel auf den Wert abbildet. Alle anderen Schliissel sollen auf die gleichen
Werte wie in der Eingabeabbildung abgebildet werden. Falls der Schliissel bereits in der Abbildung
enthalten ist, soll der Wert iiberschrieben werden. (Diese Funktion implementiert im Prinzip den Kom-
maoperator fiir einelementige Abbildungen im zweiten Argument des Kommaoperators.)

let set<'k,'v when 'k: equality> (key: 'k) (value: 'v)
(map: MapPartialFunction<'k, 'v>): MapPartialFunction<'k, 'v> =
fun (input_key: 'k) -> if input_key = key
then Some value
else map input_key

d) Schreiben Sie eine Funktion comma<'k, 'v>: MapPartialFunction<'k, 'v> -> MapPartialFunction<'k, '
v> -> MapPartialFunction<'k, 'v>, welche den Kommaoperator implementiert.

let comma<'k, 'v> (mapl: MapPartialFunction<'k, 'v>)
(map2: MapPartialFunction<'k, 'v>): MapPartialFunction<'k,

V>
fun (input_key: 'k) ->

match map2 input_key with

| None -> mapl input_key

| Some x -> Some x

e) Schreiben Sie eine Funktion delete<'k, 'v>: 'k -> MapPartialFunction<'k, 'v> -> MapPartialFunction
<'k, 'v>, welche einen Schliissel und eine Abbildung entgegennimmt und eine Abbildung zuriickgibt,
welche alle Schliissel und Werte aus der Eingabeabbildung enthilt, auBer dem Schliissel, der in der Ein-
gabeabbildung auf den Wert abgebildet wird. Falls der Schliissel nicht in der Abbildung enthalten ist,
soll die Eingabeabbildung zuriickgegeben werden.

let rec delete<'k, 'v when 'k: equality> (key: 'k)
(map: MapPartialFunction<'k, 'v>): MapPartialFunction<'k, 'v> =
fun (input_key: 'k) ->
if input_key = key then None else map input_key

	Reguläre Ausdrücke (Präsenzaufgabe)
	Endliche Abbildungen I (Einreichaufgabe, 10 Punkte)
	Endliche Abbildungen II (Einreichaufgabe, 11 Punkte)

