
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Übungsblatt 7: Konzepte der Programmierung (WS 2025/26)

Ausgabe: 09. Dezember 2025
Abgabe: 15./16./17. Dezember 2025, siehe Homepage

Aufgabe 1 Reguläre Ausdrücke (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit Funktionen höherer Ordnung auf Listen beschäftigen. Sie
können sich an den Vorlesungsfolien 547 bis 582 bzw. am Skript Kapitel 6.1 orientieren.

a) Leiten Sie das Wort ab aus dem regulären Ausdruck (a | b) | (a | b)∗ ab. Geben Sie die gesamte Redukti-
onsfolge an.

b) Geben Sie für die folgenden Beschreibungen in natürlicher Sprache einen regulären Ausdruck über dem
Alphabet {a, b, c} an:

1. Die Sprache, deren Wörter aus genau drei Buchstaben bestehen.

2. Die Sprache, deren Wörter genau zwei a enthalten.

3. Die Sprache, deren Wörter aus einer geraden Anzahl an Buchstaben bestehen.

https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/uebung/

Aufgabe 2 Endliche Abbildungen I (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie Ihr algorithmisches Denken üben sowie noch einmal mit komple-
xeren rekursiven Varianten zu programmieren. Sie können sich an den Vorlesungsfolien 499 bis 542 sowie
am Skript Kapitel 5.3 orientieren.

Schreiben Sie Ihre Lösungen in die Datei MapSortedList.fs aus der Vorlage Aufgabe-7-2.zip.

In dieser und der folgenden Aufgabe wollen wir endliche Abbildungen in F# repräsentieren. Unter einer
endlichen Abbildung verstehen wir die Zuordnung von Elementen eines Definitionsbereichs („Schlüssel“
bzw. keys) zu Elementen einer Zielmenge („Werte“ bzw. values). Davon ausgehend definieren wir als ab-
strakten Datentyp (vgl. Folie 501) für endliche Abbildungen type Map<'k, 'v>, welcher Schlüsseln vom Typ
'kWerte vom Typ 'v zuordnet.

In dieser Aufgabe implementieren wir endliche Abbildungen mithilfe von sortierten Listen vom Typ

type MapSortedList <'k, 'v when 'k: comparison > = List<'k * 'v>

Sortiert wird immer nur nach dem Schlüssel, in aufsteigender Reihenfolge. Um eine Sortierung anhand der
Schlüssel durchzuführen, müssen wir diese vergleichen können. Dazu wird when 'k: comparison gefordert.

Hinweis: Sie finden entsprechende Beispiele in den Vorlagen.

Hinweis: Sie dürfen die Standardbibliothek in Ihrer Lösung nicht verwenden.

a) Definieren Sie den Wert empty<'k, 'v> vom Typ MapSortedList<'k, 'v>, welcher eine leere Abbildung
darstellt.

b) Schreiben Sie eine Funktion lookup<'k, 'v>: 'k -> MapSortedList<'k, 'v> -> Option<'v>, welche einen
Schlüssel und eine Abbildung entgegennimmt und den Wert zurückgibt, auf den der Schlüssel in der Ab-
bildung abgebildet wird. Falls der Schlüssel nicht in der Abbildung enthalten ist, soll None zurückgegeben
werden.

c) Schreiben Sie eine Funktion set<'k, 'v>: 'k -> 'v -> MapSortedList<'k, 'v> -> MapSortedList<'k, '
v>, welche einen Schlüssel, einen Wert und eine Abbildung entgegennimmt und eine Abbildung zurück-
gibt, welche den Schlüssel auf den Wert abbildet. Alle anderen Schlüssel sollen auf die gleichen Werte
wie in der Eingabeabbildung abgebildet werden. Falls der Schlüssel bereits in der Abbildung enthalten
ist, soll der Wert überschrieben werden.

d) Schreiben Sie eine Funktion comma<'k, 'v>: MapSortedList<'k, 'v> -> MapSortedList<'k, 'v> -> MapSortedList
<'k, 'v>, welche den Kommaoperator implementiert. Die Funktion nimmt also zwei Abbildungen und
gibt eine Abbildung zurück, welche alle Schlüssel und Werte aus beiden Abbildungen enthält. Falls
ein Schlüssel in beiden Abbildungen enthalten ist, soll der Wert aus der zweiten Abbildung verwendet
werden.

e) Schreiben Sie eine Funktion delete<'k, 'v>: 'k -> MapSortedList<'k, 'v> -> MapSortedList<'k, 'v>,
welche einen Schlüssel und eine Abbildung entgegennimmt und eine Abbildung zurückgibt, welche alle
Schlüssel und Werte aus der Eingabeabbildung enthält, außer dem Schlüssel, der in der Eingabeabbil-
dung auf den Wert abgebildet wird. Falls der Schlüssel nicht in der Abbildung enthalten ist, soll die
Eingabeabbildung zurückgegeben werden.

Aufgabe 3 Endliche Abbildungen II (Einreichaufgabe, 11 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Funktionen höherer Ordnung sowie mit endlichen
Abbildungen üben.

Dies ist die Fortsetzung von Aufgabe 2.

Schreiben Sie Ihre Lösungen in die Datei MapPartialFunction.fs aus der Vorlage Aufgabe-7-3.zip.

In dieser Aufgabe implementieren wir endliche Abbildungen mithilfe von partiellen Funktionen, also Funk-
tionen vom Typ

type MapPartialFunction <'k, 'v> = 'k -> Option<'v>

Hinweis: Sie dürfen die Standardbibliothek in Ihrer Lösung nicht verwenden.

a) Definieren Sie den Wert empty<'k, 'v> vom Typ MapPartialFunction<'k, 'v>, welcher eine leere Abbil-
dung darstellt.

b) Schreiben Sie eine Funktion lookup<'k, 'v>: 'k -> MapPartialFunction<'k, 'v> -> Option<'v>, welche
einen Schlüssel und eine Abbildung entgegennimmt und den Wert zurückgibt, auf den der Schlüssel
in der Abbildung abgebildet wird. Falls der Schlüssel nicht in der Abbildung enthalten ist, soll None
zurückgegeben werden.

c) Schreiben Sie eine Funktion set<'k, 'v>: 'k -> 'v -> MapPartialFunction<'k, 'v> -> MapPartialFunction
<'k, 'v>, welche einen Schlüssel, einen Wert und eine Abbildung entgegennimmt und eine Abbildung
zurückgibt, welche den Schlüssel auf den Wert abbildet. Alle anderen Schlüssel sollen auf die gleichen
Werte wie in der Eingabeabbildung abgebildet werden. Falls der Schlüssel bereits in der Abbildung
enthalten ist, soll der Wert überschrieben werden. (Diese Funktion implementiert im Prinzip den Kom-
maoperator für einelementige Abbildungen im zweiten Argument des Kommaoperators.)

d) Schreiben Sie eine Funktion comma<'k, 'v>: MapPartialFunction<'k, 'v> -> MapPartialFunction<'k, '
v> -> MapPartialFunction<'k, 'v>, welche den Kommaoperator implementiert.

e) Schreiben Sie eine Funktion delete<'k, 'v>: 'k -> MapPartialFunction<'k, 'v> -> MapPartialFunction
<'k, 'v>, welche einen Schlüssel und eine Abbildung entgegennimmt und eine Abbildung zurückgibt,
welche alle Schlüssel und Werte aus der Eingabeabbildung enthält, außer dem Schlüssel, der in der Ein-
gabeabbildung auf den Wert abgebildet wird. Falls der Schlüssel nicht in der Abbildung enthalten ist,
soll die Eingabeabbildung zurückgegeben werden.

	Reguläre Ausdrücke (Präsenzaufgabe)
	Endliche Abbildungen I (Einreichaufgabe, 10 Punkte)
	Endliche Abbildungen II (Einreichaufgabe, 11 Punkte)

