Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik
Alexander Dinges, M.Sc.

Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 8: Konzepte der Programmierung (WS 2025/26)

Sprechstunden zu den Ubungen Sie haben Schwierigkeiten mit den Ubungsaufgaben und machen sich
Sorgen, dass es Thnen nicht gelingen wird, die zur Klausurzulassung nétigen 60% der erreichbaren Punkte
zu erlangen?

Dann besuchen Sie unsere Sprechstunden zu den Ubungen! Dort erhalten Sie Tipps und Losungshinwei-
se, wenn Sie mit einer Aufgabe nicht weiterkommen. Sie konnen dort auch zu fritheren Aufgaben Fragen
stellen. Alle Informationen zu den Ubungssprechstunden finden Sie auf unserer Homepage.

https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/#sprechstunden-zur-%C3%BCbung

Aufgabe 1 Regulare Ausdriicke (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit reguliren Ausdriicken beschiftigen. Die Aufgabe soll
Ihnen dabei helfen, den Weg von einem regulidren Ausdruck schrittweise bis zu einer Akzeptorfunktion
nachzuvollziehen. Sie konnen sich an den Vorlesungsfolien 552 bis 622 sowie am Skript Kapitel 6.1 und 6.2
orientieren.

Wir betrachten den regulidren Ausdruck b*a iiber dem Alphabet A = {a, b}.

a)

b)

c)

Bestimmen Sie alle Rechtsfaktoren (inkl. Rechtsfaktoren der Ergebnisse). Geben Sie dabei in der Rech-
nung jeweils den ersten Schritt explizit an, nachfolgende Zwischenschritte diirfen Sie zusammenfassen.

a \ b*a = (a\b*)a | a\a
= (a\b)b*a | €
=0 | €
= €

b \ b*a = (b\b*)a | b\a
= (b\b)b*a | 0
= b*a

a\e=20

b\e=20

a\0o=20

b\0=20

Zeichnen Sie den Aufrufgraphen fiir den Akzeptor (wie auf Vorlesungsfolie 599).

Umranden Sie Ausdriicke, die nullable sind, doppelt. Wenn wir beim Einlesen eines Wortes an einem
solchen nullable Ausdruck landen und keine weitere Eingabe mehr folgt, gehort das eingelesene Wort
zur durch den regulidren Ausdruck beschriebenen Sprache. Durch die doppelte Umrandung konnen wir
einfacher ablesen, dass wir an einem moglichen Ende angekommen sind (daher werden solche Knoten
auch ,,Endzustéinde genannt).

start \%a/ a @ a, b 0 a, b

b

Implementieren Sie die Akzeptorfunktionen. Gehen Sie dabei streng nach dem Verfahren aus der
Vorlesung vor (Folie 600). Nutzen Sie fiir das Alphabet den Typ type Alphabet = | A | B.

Hinweis: Wir empfehlen die einzelnen Akzeptorfunktionen als verschrankt rekursive Hilfsfunktionen in-
nerhalb von accept zu definieren und am Ende die Start-Akzeptorfunktion mit der Eingabe aufzurufen.

let accept (input: List<Alphabet>): Bool =

let rec accept® (input: List<Alphabet>): Bool = // B*A
match input with
| [] -> false
| A::rest -> acceptl rest
| B::rest -> accept® rest

and acceptl (input: List<Alphabet>): Bool
match input with
| [1] -> true
| A::rest -> accept2 rest
| B::rest -> accept2 rest

and accept2 (input: List<Alphabet>): Bool
match input with
| [1 -> false
| A::rest -> accept2 rest
| B::rest -> accept2 rest

accept® input

// €

// 0

Aufgabe 2 Santa Claus is Coming to Town (Einreichaufgabe, 17 Punkte)

Motivation: In dieser Aufgabe beschiftigen wir uns mit dem algorithmischen Problem des kiirzesten Pfades
zwischen einer Menge von Orten. Die Problemstellung wird mit Hilfe von Listen und Records modelliert.
Sie konnen sich an den Vorlesungsfolien 428 bis 542 sowie am Skript Kapitel 5 orientieren.

Schreiben Sie Ihre Losungen in die Datei Santa. fs aus der Vorlage Aufgabe-8-2.zip.

Santa Claus muss an Weihnachten seine Geschenke in einer Stadt verteilen, deren Straflen ein perfektes
Quadratraster bilden. Er hat eine Liste von Personen, die er beschenken mochte und da er nur wenig Zeit
hat, miissen wir ihm helfen den kiirzesten Pfad zwischen den Wohnorten dieser Personen zu finden.

Santa stellt uns als Eingabe eine Liste von Personen mit deren Wohnort zur Verfiigung, daher verwenden
wir folgende Typdefinitionen:

type Point = {

}

x: Nat
y: Nat

type Person = {

name: String
location: Point

}

Seine Liste konnte wie folgt aussehen: 7 Y

let lisa = {name="Lisa" ; location = {x = IN; y = 2N}} 6 Alice

let alice = {name="Alice"; location = {x = 2N; y = 5N}} 5 . Bob

let harry = {name="Harry"; location = {x = 5N; y = 3N}} 1 P

let bob = {name="Bob" ; location = {x = 4N; y = 4N}} 4 ®

let santasList = [lisa; alice; harry; bob] 3 Lo Harry

In der nebenstehenden Abbildung ist ein kiirzester Pfad fiir diese Liste 2 .

dargestellt. Im Rahmen der Aufgabe spielt es keine Rolle von wel- I 1 Lisa

chem Ort der Liste Santa startet. X

Hinweise:

e Mit den Funktionen aus dem List-Modul' kénnen Sie an einigen Stellen kiirzeren und besser ver-

standlichen Programmcode schreiben.

Zur besseren Lesbarkeit von verketteten Funktionsaufrufen gibt es in F# den sogenannten Forward
Pipe Operator. Der Ausdruck x |> £ ist eine syntaktisch andere Schreibweise fiir £ x, die Funktion £
wird also auf den Wert x angewandt. Zum Beispiel lasst sich damit der Ausdruck

List.filter (fun x -> x % 2 = 0) (List.map (fun y -> y * 3) [1..10])
umschreiben zu

[1..10] |> List.map (fun y -> y * 3) |> List.filter (fun x -> x % 2 = 0)
oder anders formatiert:

[1..10]

|> List.map (fun y -> y * 3)

|> List.filter (fun x -> x % 2 = 0)

Der Ausdruck nimmt die Liste der Zahlen 1 bis 10, multipliziert jede Zahl mit 3 und filtert die daraus
resultierende Liste nach geraden Zahlen. Das Ergebnis ist also [6; 12; 18; 24; 30].

"https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-1listmodule.html

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

a) Schreiben Sie eine Funktion distance: Person -> Person -> Nat, die den Abstand zwischen zwei Perso-
nen berechnet. Wir nehmen an, dass Santa mit seinem Schlitten durch eine Stadt fahrt, die rasterférmig
angelegt ist. Die Wegstrecke zwischen zwei Punkten ist also durch die 1-Norm? gegeben.

Beispiel: distance lisa harry = 5N

let distance (a: Person) (b: Person): Nat =
let ax = a.location.x
let ay = a.location.y
let bx = b.location.x
let by = b.location.y
((max ax bx) - (min ax bx)) + ((max ay by) - (min ay by))

b) Schreiben Sie eine Funktion pathlength: List<Person> -> Nat, die aus einer Liste von Personen die
Weglinge berechnet, die sich ergibt, wenn deren Wohnorte nacheinander besucht werden. Beachten Sie,
dass Santa am Ende wieder zum Ausgangspunkt zuriickkehren muss.

Beispiel: pathlength santasList = 16N

let rec pathlength (persons: List<Person>): Nat =
let rec pathlength' (path: List<Person>): Nat =
match path with
| [1 1 [-] -> ON

| x :: (y :: ys) -> (distance x y) + pathlength' (y :: ys)
match persons with
| [1 -> ON
| x :: xs -> pathlength' (persons @ [x])

Die Konkatenation ist notwendig, da wir einen geschlossenen Pfad benétigen.

¢) Schreiben Sie eine Funktion prepend: 'a -> List<List<'a>> -> List<List<'a>>, die ein Element elem
und eine Liste von Listen xss nimmt und das Element elem jeder in xss enthaltenen Liste voranstellt.

Beispiel: prepend 1N [[2N; 3N1; [4N; 5N11 = [[IN; 2N; 3N]; [1N; 4N; 5N1]

// rekursiv

let rec prepend (elem: 'a) (xss: List<List<'a>>): List<List<'a>> =
match xss with
| [1 -> [1

| zs :: zss -> (elem :: zs) :: (prepend elem zss)

// mit map
let prepend' (elem: 'a) (xss: List<List<'a>>): List<List<'a>> =
List.map (fun xs -> elem :: Xs) XsSs

’https://de.wikipedia.org/wiki/P-Norm#Summennorm

https://de.wikipedia.org/wiki/P-Norm#Summennorm

d) Schreiben Sie eine Funktion insert: 'a -> List<'a> -> List<List<'a>>, die ein Element elem sowie

eine Liste xs nimmt und eine Liste aller Moglichkeiten zuriickgibt, wie das Element elem in die Liste xs
eingefiigt werden kann.

Beispiel: insert 1IN [2N; 3N] = [[1N; 2N; 3N]; [2N; IN; 3N]; [2N; 3N; 1N]]

let rec insert (elem: 'a) (xs: List<'a>): List<List<'a>> =
match xs with

| [1 -> [[elem]]
| v :: ys -> (elem :: xs) :: (prepend y (insert elem ys))

e) Schreiben Sie eine Funktion permute: List<'a> -> List<List<'a>>, die eine Liste aller Permutationen
der gegebenen Liste berechnet.

Beispiel:

permute [1IN; 2N; 3N] = [[1IN; 2N; 3N]; [2N; 1N; 3N]; [2N; 3N; 1N]
; [IN; 3N; 2N]; [3N; 1IN; 2N]; [3N; 2N; 1N]]

// mit collect

let rec permute (ls: List<'a>): List<List<'a>> =
match 1s with

| [1 -> [[1]

| x :: xs -> List.collect (fun a -> insert x a) (permute Xxs)

// rekursiv
let rec permute' (ls: List<'a>): List<List<'a>> =

let rec ins (elem: 'a) (permutationsOfTail: List<List<'a>>): List<List<'a>> =
match permutationsOfTail with

| [1 -> [1

| (p :: ps) -> (insert elem p) @ (ins elem ps)
match 1s with
| [1 -> [[]]
| x :: xs -> ins x (permute' xs)

Wir permutieren zuerst den tail xs und fiigen dann in jede Permutation x an alle moglichen Stellen
ein.

f) Schreiben Sie eine Funktion shortestPath: List<Person> -> List<Person> * Nat, die den kiirzesten Weg
zwischen den iibergebenen Personen und dessen Linge zuriickgibt. Der Pfad der Losung ist nicht ein-
deutig, z.B. dndert sich die Pfadlédnge nicht, wenn dieser riickwérts durchlaufen wird.

Hinweis: Die Funktionen List.minBy und List.map konnten hilfreich sein.

Beispiel einer moglichen Losung fiir santasList:

shortestPath santasList =

([{ name = "Alice"; location = { x = 2N; y = 5N} }
; { name = "Lisa"; 1location = { x = 1IN; y = 2N} }
; { name = "Harry"; location = { x = 5N; y = 3N} }
; { name = "Bob"; location = { x = 4N; y = 4N} 1}]
, 14N)

// Loésung mit map und minBy

let shortestPath (persons: List<Person>): (List<Person> * Nat) =
permute persons
|> List.map (fun x -> (x, pathlength x))
|> List.minBy snd

// rekursive Losung
let rec shortestPath' (persons: List<Person>): List<Person> * Nat =
let rec sp (possiblePaths: List<List<Person>>) =
match possiblePaths with
[[1 -> ([1, ON)
| [path] -> (path, pathlength path)
| path :: paths -> let curr = (path, pathlength path)
let rest = sp paths
if snd curr <= snd rest then curr
else rest
sp (permute persons)

Wir berechnen zuerst alle moglichen Pfade mit permute. Nachdem wir jedem Pfad seine Linge zuge-
ordnet haben, geben wir einen Pfad kiirzester Linge zuriick.

g) Kommentieren Sie Ihren Code so, dass Ihre Losung einfach nachzuvollziehen ist. Aulerdem sollte Thr
Code keine unnétig komplexen Ausdriicke enthalten, siehe auch Aufgabe 3 auf Ubungsblatt 5. Dafiir
vergeben wir hier drei Punkte.

Aufgabe 3 Regulare Ausdriicke (Einreichaufgabe, 9 Punkte)

Motivation: In dieser Aufgabe sollen Sie sich mit reguliren Ausdriicken beschiftigen. Die Aufgabe soll
Ihnen dabei helfen den Weg von einem reguldren Ausdruck schrittweise bis zu einer Akzeptorfunktion
nachzuvollziehen. Sie konnen sich an den Vorlesungsfolien 552 bis 622 sowie am Skript Kapitel 6.1 und 6.2
orientieren.

Praxistipp: Das UNIX- bzw. Linuxprogramm grep’ erlaubt die Suche in Dateien und Datenstrdmen anhand
von reguliren Ausdriicken. Unter Windows stellt das PowerShell Kommando Select-String -Pattern eine
dhnliche Funktionalitét zur Verfiigung.

Schreiben Sie Ihre Losungen in die Datei RegExp. fs aus der Vorlage Aufgabe-8-3.zip.

Wir betrachten den regulidren Ausdruck c(a|c)*(al (bc)*) iiber dem Alphabet A = {a, b, c}.

a) Bestimmen Sie alle Rechtsfaktoren (inkl. Rechtsfaktoren der Ergebnisse). Geben Sie dabei in der Rech-
nung jeweils den ersten Schritt explizit an, nachfolgende Zwischenschritte diirfen Sie zusammenfassen.

a \ c(Calo)*(al(bc)™®) (a \ o (ala)*(al(bc)™)
0

(b \) (alc)*(al(bc)*)
0

(c \ o (ala)*(al(bc)™)
(alc)*(al(bc)*)

b \ c(alc)*(al(bc)*)

c \ c(ale)*(al(be)*)

a \ (alc)*(al(bc)*) (a \ (ala)*)(al(bc)*) | a\(al(bc)*®)
(alad*(al(bc)*) | €

(alc)*(al (bc)*)

(b \ (ala)*)(al(bc)*) | b\(al(bc)*)
c(bc)*

(c \ (aled®™ (al(bc)*) | c\(al(bc)*)
(alc)*(al (bc)™)

b \ (alc)*(al(bc)*)

c \ (alce)*(al(bc)*)

a \ c(ba)* = (a \) (bo)* =10

b \ c(bc)* = (b \ c) (bc)* =0

c \ c(bc)* = (c \) (bc)* = (bc)*

a \ (ba)* = (a \ (bc)) (bo)* =0

b \ (bc)* = (b \ (bc)) (bc)* = c(bc)*
c \ (ba)* = (c \ (bc)) (ba)* =0
a\0=20

b\0=20

c\0 =20

€ ist das neutrale Element der Konkatenation. @ ist das neutrale Element der Alternative.

*https://de.wikipedia.org/wiki/Grep

https://de.wikipedia.org/wiki/Grep

b) Zeichnen Sie den Aufrufgraphen fiir den Akzeptor (wie auf Vorlesungsfolie 599).

Umranden Sie Ausdriicke, die nullable sind, doppelt. Wenn wir beim Einlesen eines Wortes an einem
solchen nullable Ausdruck landen und keine weitere Eingabe mehr folgt, gehort das eingelesene Wort
zur durch den reguldren Ausdruck beschriebenen Sprache. Durch die doppelte Umrandung kénnen wir
einfacher ablesen, dass wir an einem moglichen Ende angekommen sind (daher werden solche Knoten
auch ,,Endzustinde‘ genannt).

start

caled*(al (bed*)

(ale)*(al (be)™) c

¢) Implementieren Sie die Akzeptorfunktionen. Gehen Sie dabei streng nach dem Verfahren aus der
Vorlesung vor (Folie 600). Nutzen Sie fiir das Alphabet den Typ type Alphabet = | A | B | C.

Hinweis: Wir empfehlen die einzelnen Akzeptorfunktionen als verschrinkt rekursive Hilfsfunktionen in-
nerhlab von accept zu definieren und am Ende die Start-Akzeptorfunktion mit der Eingabe aufzurufen.

let

and

and

and

and

let accept (input: List<Alphabet>): Bool =

rec accept® (input: List<Alphabet>): Bool
match input with

| [1 -> false

| A::rest -> accept3 rest // 0

| B::rest -> accept3 rest // 0

| C::rest -> acceptl rest // (A|C)*(A|(BC)*

acceptl (input: List<Alphabet>): Bool = //
match input with
| [1 -> true

| A::rest -> acceptl rest // (A|C)*(A|(BC)*

| B::rest -> accept2 rest // C(BC)*

| C::rest -> acceptl rest // (A|C)*(A|(BC)*

accept2 (input: List<Alphabet>): Bool = //
match input with

| [1 -> false

| A::rest -> accept3 rest // 0

| B::rest -> accept3 rest // 0

| C::rest -> accept4 rest // (BCO)*
accept3 (input: List<Alphabet>): Bool
match input with

| [1 -> false

| A::rest -> accept3 rest // 0

| B::rest -> accept3 rest // 0

| C::rest -> accept3 rest // 0
accept4 (input: List<Alphabet>): Bool
match input with

| [] -> true

| A::rest -> accept3 rest // 0

| B::rest -> accept2 rest // C(BCO)*

| C::rest -> accept3 rest // 0

//

//

accept® input

// CCAICY*(A|(BCY™)

)

(AIC)* (AT (BCY™)

C(BCO)*

(BOO*

	Reguläre Ausdrücke (Präsenzaufgabe)
	Santa Claus is Coming to Town (Einreichaufgabe, 17 Punkte)
	Reguläre Ausdrücke (Einreichaufgabe, 9 Punkte)

