Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik

Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 9: Konzepte der Programmierung (WS 2025/26)

Ein- und Ausgabe Auf diesem Ubungsblatt betrachten wir Ein- und Ausgabe (Kapitel 7, Effekte). Die
folgenden Funktionen (aus dem Modul Mini . fs) konnen Sie verwenden: !

putstring: String -> Unit // Schreibt den gegebenen String auf die Konsole.
putline: String -> Unit // Schreibt den gegebenen String gefolgt von einem
// Zeilenumbruch auf die Konsole.

putchar: Char -> Unit // Schreibt das gegebene Zeichen auf die Konsole.

print: 'a -> Unit // Schreibt einen beliebigen Wert (entsprechend formatiert)
// gefolgt von einem Zeilenumbruch auf die Konsole.

getchar: Unit -> Char // Liest das nidchste einzelne Zeichen von der Konsole.

getline: Unit -> String // Liest die ndchste komplette Zeile von der Konsole.

Die Funktionen, die etwas von der Konsole einlesen, warten so lange bis eine Eingabe verfiigbar ist. Fiir
getchar reicht schon ein einzelnes Zeichen in der Eingabe. Bei getline wird so lange gewartet, bis ein
Zeilenumbruch (Enter-Taste) erzeugt wurde. Zuriickgegeben wird der String ohne den Zeilenumbruch.

Weitere hilfreiche Funktionen sind:

readNat: String -> Nat // Nimmt einen String und gibt den Wert als Zahl zuritck.
show: 'a -> String // Nimmt einen beliebigen Wert und gibt einen String zurtck,

// der den Wert beschreibt, meist in F# Syntax (z.B. "5N").
string: 'a -> String // Wandelt einen beliebigen Wert in einen String um.

In den Beispielen bei den Aufgaben ist die Ausgabe des Programms blau und die Eingabe rot markiert.
Leerzeichen sind durch das Symbol .. dargestellt, Zeilenumbriiche durch «.

'In der abstrakten Syntax auf den Vorlesungsfolien und im Skript haben die Funktionen einen Bindestrich im Namen. Auch wenn
diese Schreibweise moglicherweise schoner ist, ist ein Bindestrich in F# kein giiltiges Zeichen fiir Bezeichner. Fiir die Ubung
brauchen wir Funktionsnamen, die in F# tatsdchlich giiltig sind, daher verzichten wir auf den Bindestrich.

Aufgabe 1 Warm Up (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit der Ein- und Ausgabe vertraut machen. Sie kdnnen sich
an den Vorlesungsfolien 715 bis 751 sowie am Skript Kapitel 7.1 orientieren.

Schreiben Sie Ihre Losungen in die Datei Program. fs aus der Vorlage Aufgabe-9-1.zip.

a) Machen Sie sich mit den oben vorgestellten Funktionen vertraut. Starten Sie den F# Interpreter und
laden Sie das Modul Mini. Fiihren Sie dazu dotnet fsi Mini.fs aus.

Geben Sie nun die folgenden Ausdriicke jeweils gefolgt von ;; ein:

e putline("Hallo F#!") ® readNat "123N"

® putstring("Hallo F#!") ® readNat "123"

® putchar('X") ® show 5N

e let tupel = (10N,20N) in print(tupel) ® string 5N

e let x = getline() e show (10N, 'X")
e let y = getchar() e show [IN; 2N; 3N]

Fiir diese Teilaufgabe ist keine Bearbeitung der Vorlage notwendig.

> putline("Hallo F#!");;
Hallo F#!
val it : unit = Q

> putstring("Hallo F#!");;
Hallo F#!val it : unit = QO

> putchar('X"');;
Xval it : unit = O

> let tupel = (10N,20N) in print(tupel);;
(10N, 20N)
val it : unit = QO

> let x = getline(Q);;
Jetzt kann ich hier schreiben bis ich Enter dricke«

val x : string = "Jetzt kann ich hier schreiben bis ich Enter driucke"

> let y = getchar();;
Zval y : char = 'Z'

> readNat "123N";;
val it : Nat = 123N

> readNat "123";;
val it : Nat = 123N

> show 5N;;
val it : string = "5N"

> string 5N;;

val it : string = "5"

> show (10N, 'X");;

val it : string = "(1ON, 'X")"

> show [1N; 2N; 3N];;

val it : string = "[1N; 2N; 3N]"

b) Schreiben Sie eine Funktion queryNat: String -> Nat, welche als Argument einen String entgegen-

nimmt, der auf die Konsole ausgegeben wird. AnschlieBend wird die Eingabe einer natiirlichen Zahl
erwartet (die Eingabe wird durch Driicken der Enter-Taste abgeschlossen).

Die eingegebene Zahl soll von der Funktion als Wert vom Typ Nat zuriickgegeben werden. Falls die
Eingabe keine giiltige natiirliche Zahl ist, soll das Programm die Fehlermeldung "Eingabe ist keine
natuerliche zahl!" ausgeben und die Eingabeaufforderung so lange wiederholen, bis eine giiltige Ein-
gabe vorliegt.

Beispielaufruf: queryNat "Bitte geben Sie eine natuerliche Zahl ein: "

Bitte.geben.Sie_eine_natuerliche.Zahl_ein:_ <
Eingabe_ist_keine_.natuerliche.Zahl!«
Bitte.geben,_.Sie_eine_natuerliche.Zahl _ ein:_ -1«
Eingabe_ist_keine_natuerliche_Zahl!«
Bitte._geben,.Sie_eine.natuerliche,.Zahl_ein:_a«
Eingabe.ist_keine_natuerliche_Zahl!«
Bitte.geben,_.Sie_eine_natuerliche.Zahl_ein:_ 0«

let rec queryNat (msg: String): Nat =
putstring msg
let s = getline Q)
if s <> "" && String.forall Char.IsDigit s then
readNat s
else putline "Eingabe ist keine natuerliche Zahl!"
queryNat msg

Schreiben Sie eine Funktion main, die mit Hilfe der Funktion queryNat drei natiirliche Zahlen einliest
und deren Minimum ausgibt. Sie konnen das Programm mit dotnet run ausfiihren.

Beispiel:

Bitte.geben.Sie.drei.natuerliche.Zahlen._ein.«
Erste.Zahl:_ ae
Eingabe_ist_keine_natuerliche_Zahl!«
Erste.Zahl:_ 815«

Zweite,Zahl: 4711«

Dritte.Zahl:_. 2023«

Minimum:_815¢«

let main(): Unit =
putline "Bitte geben Sie drei natuerliche Zahlen ein."
let nl = queryNat "Erste Zahl: "
let n2 = queryNat "Zweite Zahl: "
let n3 = queryNat "Dritte Zahl: "
let min3 = min nl (min n2 n3)
putline ("Minimum: " + (string min3))

Aufgabe 2 Ein- und Ausgabe: Wirfel-Black-Jack-Spiel
(Einreichaufgabe, 26 Punkte)

Schreiben Sie Ihre Losungen in die Datei BlackJack. fs aus der Vorlage Aufgabe-9-2.zip.

In dieser Aufgabe werden wir eine einfache Variante des Black Jack-Spiels® implementieren. Eine Anzahl
an Spielern wiirfelt reihum. Jeder Spieler addiert die Werte, die er wiirfelt auf. Ziel ist es, so nah wie mdglich
an den Wert 21 zu kommen, ohne diesen jedoch zu iiberschreiten. Im Fall des Uberschreitens verliert der
Spieler automatisch. Jeder Spieler hat die Moglichkeit, auszusteigen, wobei er seine Punktzahl behilt.

In den folgenden Aufgabenteilen werden wir das Wiirfel-Black-Jack-Spiel Schritt fiir Schritt implementie-
ren.

Wir modellieren einen Spieler durch einen String. Den Zustand des Spielers, also den aktuellen Spielstand
und ob er noch teilnimmt, speichern wir in

type PlayerState = { score : Nat ; active : Bool }

Den Gesamtspielstand speichern wir in einer MapUnsortedList<String, PlayerState>. Von Aufgabe 2 auf
Ubungsblatt 7 kennen Sie MapSortedList<'k, 'v>. Der Datentyp MapUnsortedList<'k, 'v> funktioniert ganz
analog. Die Funktionen insert<'k, 'v>: 'k*'v -> MapUnsortedList<'k, 'v> -> MapUnsortedList<'k, 'v>und
tryFind<'k, 'v>: 'k -> MapUnsortedList<'k, 'v> -> Option<'v> stehen lhnen zur Verfiigung. Wir verwen-
den die Abkiirzung

type Players = MapUnsortedList<String, PlayerState>

Das Ein- und Ausgabeverhalten des Spiels muss zwingend einer fest vorgegebenen Struktur folgen!
Beachten Sie die Hinweise auf der ersten Seite.

a) Schreiben Sie eine Funktion queryBool: String -> Bool, welche als Argument einen String entgegen-
nimmt, der auf die Konsole ausgegeben wird. AnschlieBend wird die Eingabe von "ja" oder "nein"
erwartet (die Eingabe wird durch Driicken der Enter-Taste abgeschlossen).

Wird "ja" eingegeben, soll true und bei "nein" soll false zuriickgegeben werden. Falls die Eingabe
weder "ja" noch "nein" ist, soll das Programm die Fehlermeldung "Eingabe ist weder ja noch nein!"
ausgegeben und die Eingabeaufforderung so lange wiederholt werden, bis eine giiltige Eingabe vorliegt.

I3eispie]aufruf:queryBool "Spieler A ist an der Reihe. Moechte Spieler A wuerfeln? (ja/mein)"

Spieler_A_ist.an.der_Reihe._Moechte_Spieler_A_ wuerfeln?.(ja/nein)«
Eingabe_ist.weder._.ja.noch_nein!«

Spieler. A ist.an.der_Reihe._Moechte.Spieler_A_ wuerfeln?.(ja/nein)j«
Eingabe.ist.weder.ja.noch_nein!«
Spieler_A_ist._an.der_Reihe._Moechte_Spieler_A_ wuerfeln?.(ja/nein)yes«
Eingabe_ist.weder.ja.noch_nein!«
Spieler_A_ist.an.der_Reihe._Moechte_Spieler_A_wuerfeln?.(ja/nein)ja<

let rec queryBool (msg: String): Bool =
putstring msg
let s = getline ()

if s = "ja" then
true

elif s = "nein" then
false

else

putline "Eingabe ist weder ja noch nein!"
queryBool msg

2https://de.wikipedia.org/wiki/Black_Jack

https://de.wikipedia.org/wiki/Black_Jack

b) Schreiben Sie eine Funktion queryMove: (Unit -> Nat) -> String -> Players -> Players, welche einen
,»Wiirfel“, den wir durch eine Funktion mit dem Typen Unit -> Nat modellieren, einen Spieler sowie den
Gesamtspielstand nimmt. Der Spieler soll mithilfe von queryBool gefragt werden, ob er wiirfeln mochte.
Falls er dies bejaht, soll der Wiirfel ,,geworfen* werden und die Augenzahl dem Spieler zugeschrieben
werden. Aullerdem soll die gewiirfelte Zahl ausgegeben werden. Der Zustand des Spielers soll aktuali-
siert werden, d.h. die Augenzahl soll auf seinen Punktestand addiert werden. Ist der neue Punktestand
zudem grofer als 21, wird active auf false gesetzt. Falls der Spieler die Frage verneint, soll active des
Spielers auf false gesetzt werden. In beiden Fillen wird der aktualisierte Gesamtstand zuriickgegeben.

Im Fall, dass der Spieler gar nicht existiert, soll der Spielstand unveridndert zuriickgegeben werden. Sie
miissen auBerdem nicht vorher iiberpriifen, ob der Spieler noch aktiv ist.

Beispielaufruf:
let spielstand = [("A", { score = 10N; active = true }); ("B", { score = 15N; active = true })]

queryMove gdpWuerfel "A" spielstand

Spieler_A_ist.an.der_Reihe._Moechte_A_ wuerfeln?.(ja/nein)_y«
Eingabe_ist.weder._.ja.noch_nein!«
Spieler_A_ist.an.der_Reihe._Moechte_A_ wuerfeln?.(ja/nein).ja«<
Wuerfeln..._Der_Wuerfel_zeigt. 4«

Im Beispiel soll [("A", { score = 14N; active = true }); ("B", { score = 15N; active = true })] Zu-
riickgegeben werden.

let queryMove (dice: Unit -> Nat) (player: String) (players: Players): Players =
let cont = queryBool ("Spieler + player + ist an der Reihe. "
+ "Moechte " + player + " wuerfeln? (ja/nein) ")
let maybeOldState = tryFind player players
match maybeOldState with
| None -> players
| Some oldState ->
if cont
then
let diceValue = dice ()
putline ("Wuerfeln... Der Wuerfel zeigt
+ (string diceValue))
let newScore = oldState.score + diceValue
let newState = { score = newScore
; active = oldState.active && newScore <= 21N}
insert (player, newState) players
else
insert (player, {oldState with active = false }) players

¢) Schreiben Sie eine Funktion scoreOveriew: Players -> Unit, welche den gegebenen Gesamtspielstand
ausgibt.

Beispielaufruf: scoreOverview spielstand

Aktueller.Spielstand:«
A:_10_Punkte«
B:_15_Punkte«

let scoreOverview (players: Players): Unit =
putline "Aktueller Spielstand:"
let rec h (players: Players): Unit =
match players with
I [1 > 0O
| (name, score)::restPlayers ->
putline (name + ": " + (string score.score) + " Punkte")
h restPlayers
h players

d) Schreiben Sie eine Funktion evaluateScore: Players -> Unit, welche den gegebenen Gesamtspielstand
nimmt und ausgibt, wer gewonnen hat. Sollte niemand gewonnen haben (weil alle Spieler mehr als 21
Punkte haben), soll das ausgegeben werden.

Sie konnen ignorieren, ob der Spieler aktiv ist oder nicht. Bei Gleichstand konnen Sie willkiirlich einen
Sieger ermitteln.

Beispielaufruf: evaluateScore spielstand

Spieler. B hatomit, 15_Punkten.,gewonnen. <

Beispielaufruf: evaluateScore [("A", { score = 22N; active = false })]

Kein.Spieler_hat.gewonnen.«

let evaluateScore (players: Players): Unit =
let candidates = players
|> List.filter (fun (_, s) -> s.score <= 21N)
match candidates with
| [] -> putline "Kein Spieler hat gewonnen."
| _ -> let (name, state) = List.maxBy (fun (_, s) -> s.score) candidates
putline ("Spieler " + name + " hat mit
+ (string state.score) + " Punkten gewonnen.")

e) Schreiben Sie eine Funktion blackjack: (Unit -> Nat) -> String -> Players -> Unit, welche einen ,,Wiir-
fel, einen Spielernamen und den Gesamtspielstand nimmt. Die Funktion soll den Spielstand ausgeben
und dann den Spieler ziehen lassen. Anschlieend soll gepriift werden, ob das Spiel fertig ist. In diesem
Fall geben Sie aus, wer gewonnen hat. Andernfalls soll das Spiel mit dem néchsten Spieler fortgefiihrt
werden.

Sie diirfen davon ausgehen, dass der Spielername tatsdchlich in der Liste existiert.

Hinweis: Verwenden Sie die vorgefertigte Funktion nextPlayer: String -> Players -> Option<String>.
Diese nimmt den aktuellen Spielernamen und den aktuellen Spielstand und gibt aus, wer der nichste
Spieler ist. Sollte es keinen nédchsten Spieler geben, wird None zuriickgegeben. In diesem Fall ist das
Spiel beendet.

Beispielaufruf: blackjack gdpWuerfel "A" spielstand

Aktueller.Spielstand:«

A:_10_Punkte«

B:_15_Punkte«

Spieler_A_ist.an.der_Reihe._Moechte_A_ wuerfeln?.(ja/nein)_ja<
Wuerfeln..._Der_Wuerfel_zeigt. 3«

Aktueller._.Spielstand:«

A:_13_Punktee

B:_15_Punkte«
Spieler.B.ist.an.der_Reihe._Moechte_B.wuerfeln?.(ja/nein)._.ja«<
Wuerfeln..._Der_Wuerfel_zeigt. 3«

Aktueller. Spielstand:«

A:_13_Punkte«

B:_.18_Punkte«

Spieler_A_ist.an.der_Reihe._Moechte_A_ wuerfeln?.(ja/nein).ja<
Wuerfeln..._Der_Wuerfel_zeigt. 2«

Aktueller.Spielstand:«

A:_15_Punkte«

B:_.18_Punkte«
Spieler_B.ist.an.der_Reihe._Moechte_B.wuerfeln?.(ja/nein)_ja<
Wuerfeln..._.Der_ Wuerfel_ zeigt. 4«

Aktueller.Spielstand:«

A:_15_Punktee

B:_.22_Punkte«

Spieler_A_ist.an.der_Reihe._Moechte_A_ wuerfeln?.(ja/nein).ja<
Wuerfeln..._Der_Wuerfel_zeigt._ 4«

Aktueller.Spielstand:«

A:_.19_Punkte«

B:_.22_Punkte«
Spieler_A_ist.an.der_Reihe._Moechte_A_.wuerfeln?.(ja/nein)_nein<
Spieler. A _hat.mit_.19_Punkten.gewonnen. <

let rec blackjack (dice: Unit -> Nat) (player: String) (players: Players): Unit =
scoreQOverview players
let newPlayers = queryMove dice player players
let next = nextPlayer player newPlayers
match next with
| None -> evaluateScore newPlayers
| Some nextName -> blackjack dice nextName newPlayers

f) Schreiben Sie eine Funktion main, die zunéchst den String "Willkommen zu Wuerfel-Black-Jack"! ausgibt

g)

und anschlieend das blackjack Spiel mit der vorgefertigten Funktion gdpWuerfel als Wiirfel, "Harry" als
beginnenden Spieler und der Liste gdpPlayers als initialen Spielstand startet.

Sie konnen das fertige Spiel mit dem Befehl dotnet run ausfiihren.

Beispiel:

Willkommen.zu.Wuerfel-Black-Jack!«

Aktueller.Spielstand:«

Harry:_.0_Punkte«

Lisa:_0_Punktee
Spieler_Harry_ist.an.der_Reihe._Moechte_Harry.wuerfeln?.(ja/nein)._ja<
Wuerfeln. ... Der_Wuerfel_ zeigt.l«

Aktueller.Spielstand:«

Harry:.1l.Punkte«

Lisa:.0_Punkte«

Spieler_.Lisa.ist.an.der _Reihe._Moechte_Lisa_.wuerfeln?_.(ja/nein)_nein<
Aktueller. Spielstand:«

Harry:_.1_Punkte«

Lisa:_0_Punkte«
Spieler_Harry_ist.an.der_Reihe._Moechte_Harry._.wuerfeln?.(ja/nein)._\<nein<
Spieler Harry_ hat.mit.l_.Punkten._.gewonnen.«

let main(): Unit =
putline "Willkommen zu Wuerfel-Black-Jack!"
blackjack gdpWuerfel "Harry" gdpPlayers

Achten Sie darauf, dass Ihr Programmcode moglichst lesbar ist und keine unnotig komplexen Ausdriicke
enthilt (vgl. Ubungsblatt 5 Aufgabe 3). Dafiir vergeben wir bei dieser Aufgabe 3 Punkte.

Siehe Losungsvorschlige oben.

Aufgabe 3 Regulare Ausdriicke automatisiert (Trainingsaufgabe)

Motivation: Anhand dieser freiwilligen Zusatzaufgabe konnen Sie nachvollziehen wie Akzeptoren fiir regu-
lare Ausdriicke automatisiert generiert werden kdnnen.

Schreiben Sie Ihre Losungen in die Datei Program. fs aus der Vorlage Aufgabe-9-3. zip.

Harry Hacker erinnert sich, warum wir den seiner Ansicht nach komplizierten Weg iiber die Rechtsfaktoren
gehen, anstatt uns passende Funktionen einfach so auszudenken: Das Argument fiir die Rechtsfaktoren ist,
dass sie sich komplett automatisiert berechnen lassen. Dies moéchte Harry Hacker nun einmal ausprobieren.
Helfen Sie ihm, die dazu notigen Funktionen zu implementieren. Folgenden Typ hat er schon definiert, um
regulédre Ausdriicke in F# beschreiben zu konnen:

type Reg<'T> =

| Eps // das leere Wort

| Sym of 'T // einzelnes Zeichen / Terminalsymbol
| Cat of Reg<'T> * Reg<'T> // Konkatenation / Sequenz

| Empty // die leere Sprache

| Alt of Reg<'T> * Reg<'T> // Alternative

| Rep of Reg<'T> // Wiederholung

Beispiel zur Beschreibung des reguliren Ausdrucks (ab)* in diesem Typ:

type Alphabet = | A | B
let abstar: Reg<Alphabet> = Rep (Cat (Sym A, Sym B))

Tipp: Fiir die Teilaufgaben a und b miissen Sie lediglich die Definitionen aus den Vorlesungsfolien in giilti-
gen F#-Code tibertragen. Teil c ist etwas komplizierter, d und e sind wieder einfacher.

a) Schreiben Sie eine Funktion nullable: Reg<'T> -> Bool, die berechnet, ob der gegebene reguldre Aus-
druck nullable ist, d.h. ob er das leere Wort € akzeptiert.

Beispiele:

nullable abstar = true // abstar aus der Definition oben
nullable Eps = true

nullable (Sym A) = false

let rec nullable<'T> (r: Reg<'T>): Bool =

match r with

| Sym _ -> false

| Eps -> true

| Cat (r1l, r2) -> nullable rl1 && nullable r2
| Empty -> false

| Alt (rl, r2) -> nullable rl || nullable r2
| Rep _ -> true

b)

c)

Schreiben Sie eine Funktion divide: 'T -> Reg<'T> -> Reg<'T> die ein Zeichen x aus dem Alphabet
sowie einen reguldren Ausdruck r nimmt und den Rechtsfaktor x\r berechnet.

Beispiele:

divide A (Sym A) Eps

divide B (Sym A) = Empty

divide A (Cat (Sym A, Sym B)) = Alt (Cat (Eps, Sym B), Cat (Empty, Empty))

Das Resultat im letzten Beispiel lédsst sich vereinfachen zu Sym B. Sie brauchen keine Vereinfachungen
einzubauen, in Helpers. fs steht eine Funktion simplify: Reg<'T> -> Reg<'T> bereit, die derartige Ver-
einfachungen durchfiihrt. Damit ist dann simplify (divide A abstar) = Cat (Sym B, abstar).

let rec divide<'T when 'T: comparison> (x: 'T) (r: Reg<'T>): Reg<'T> =
match r with
| Sym a -> if a = x then Eps else Empty
| Eps -> Empty
| Cat (rl, r2) when nullable r1 ->
Alt (
Cat (divide x ri1, r2),
divide x r2
)
Cat (rl, r2) -> Cat (divide x rl, r2)
Empty -> Empty
Alt (rl1l, r2) -> Alt (divide x rl, divide x r2)
Rep r -> Cat (divide x r, Rep r)

Nun wollen wir nicht nur einen Rechtsfaktor berechnen, sondern alle. Also auch die Rechtsfaktoren der
Rechtsfaktoren usw. Wir nutzen dazu folgenden Datentyp:

*

type Automaton<'T when 'T: comparison> = Map<Reg<'T>, Map<'T, Reg<'T>> Bool>

Wir betrachten also eine Map (endliche Abbildung), deren Schliissel regulidre Ausdriicke sind. Als Werte
in dieser Map sind Paare gespeichert. Die zweite Komponente des Paars ist ein boolescher Wert, der
angibt, ob der reguldre Ausdruck nullable ist. Die erste Komponente des Paars ist eine weitere Map, die
wiederum Zeichen des Eingabealphabets auf regulidre Ausdriicke abbildet.

Wenn der regulidre Ausdruck r auf das Paar (m, false) abgebildet wird und m das Zeichen x auf den
reguldren Ausdruck r' abbildet, dann bedeutet das, dass x\r = r' ist und dass r nicht nullable ist.

Das beschriebene Konstrukt ist ein endlicher Automat: Jeder regulidre Ausdruck ist ein Zustand des
Automaten. Die Map<'T, Reg<'T>> beschreibt die Transitionen vom Zustand des reguldren Ausdrucks
ausgehend. Der boolesche Wert (zweite Komponente des Paars) gibt an, ob es sich beim jeweiligen
Zustand um einen akzeptierenden Zustand handelt. Daher haben wir diesen Datentyp Automaton genannt.

Machen Sie sich mit dem Map Modul aus der Standardbibliothek?® vertraut, insbesondere mit Map. empty,
Map.add, Map.find und Map.containsKey.

Schreiben Sie eine Funktion calculateAutomaton: Reg<'T> -> Automaton<'T>, die flir einen gegebenen
reguldren Ausdruck einen solchen Automaten berechnet. Gehen Sie dabei wie folgt vor:

1. Definieren Sie sich eine rekursive Hilfsfunktion, die als Eingabe einen Automaton<'T> sowie einen
reguldren Ausdruck r vom Typ Reg<'T> erhélt und einen aktualisierten Automaton<'T> zuriickgibt.

2. Die Hilfsfunktion iiberpriift, ob r bereits im Automaten enthalten ist, also ob dieser Schliissel in
der Map existiert. Ist dies der Fall, dann wird der Automat unverédndert zuriickgegeben.

3. Andernfalls wird der gegebene Automat aktualisiert, indem zum reguldren Ausdruck r zunéchst
das Paar (Map.empty, nullable r) hinterlegt wird. Dies ist notwendig, damit rekursive Aufrufe in
die Abbruchbedingung aus dem vorherigen Schritt gelangen.

3https://fsharp.github.io/fsharp—core—docs/reference/fsharp—collections—mapmodule.html

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html

4. Mit cases<'T>() erhalten Sie eine Liste vom Typ List<'T>, die alle Symbole des Eingabealphabets
enthilt. Beispielsweise ist cases<Alphabet>() = [A; B] (fiir den im Beispiel oben definierten Typ
Alphabet). Fiir jedes dieser Symbole x berechnen wir den Rechtsfaktor r' = x\r. Nutzen Sie die
Funktion simplify um r' zu vereinfachen.

Rufen Sie nun die Hilfsfunktion rekursiv auf, um r' und alle seine Rechtsfaktoren in den Automa-
ten einzutragen. Anschlieend tragen Sie in den Automaten ein, dass der Rechtsfaktor x\r = r" ist.
Dazu miissen Sie zunichst die innere Map fiir die Transitionen von r aktualisieren und die aktuali-
sierte Map anschliefend in die duflere Map eintragen. Achten Sie darauf, die zweite Komponente
des Paars (also ob r nullable ist) nicht zu verindern.

Tipp: Da Sie den Automaten schrittweise fiir jedes Symbol aus dem Alphabet aktualisieren miis-
sen, bietet sich die Verwendung von List. fold an.

5. Zum Schluss muss die Haupt-Funktion die Hilfsfunktion mit einem leeren Automaten (Map . empty)
und dem gegebenen reguldren Ausdruck aufrufen.

let calculateAutomaton<'T when 'T: comparison> (r: Reg<'T>): Automaton<'T> =
let rec insert (automaton: Automaton<'T>) (r: Reg<'T>): Automaton<'T> =
if Map.containsKey r automaton then automaton
else
let automaton = automaton |> Map.add r (Map.empty, nullable r)
cases<'T>() |> List.fold (
fun automaton x ->
let r' = divide x r |> simplify
let automaton = insert automaton r'
let (transitions, isNullable) = automaton |> Map.find r
let transitions = transitions |> Map.add x r'
automaton |> Map.add r (transitions, isNullable)
) automaton
insert Map.empty r

d) Wir definieren nun type Alphabet = | Zero | One | Dot. Definieren Sie einen Wert floatRegex vom Typ
Reg<Alphabet>, um den folgenden regulidren Ausdruck fiir FlieBkommazahlen zu beschreiben:
COILE@ID*.OID*) | .(O1)@[1)*%)

type Alphabet = | Zero | One | Dot
let floatRegex: Reg<Alphabet> =
Alt (
Cat (
Alt (
Sym Zero,
Cat (
Sym One,
Rep (Alt (Sym Zero, Sym One))
)
J,
Cat (
Sym Dot,
Rep (Alt (Sym Zero, Sym One))
D)
),
Cat (
Sym Dot,
Cat (
Alt (Sym Zero, Sym One),
Rep (Alt (Sym Zero, Sym One))
D)
)
)
type Alphabet2 = | A | B
let alphabetRegex: Reg<Alphabet2> = // (ab) (ab)*|(ba) (ba)*
Alt (
Cat (
Cat (Sym A, Sym B),
Rep (Cat (Sym A, Sym B))

10

),
Cat (

Cat (Sym B, Sym A),

Rep (Cat (Sym B,

Sym A))

11

e) Starten Sie das Programm mit dotnet run. Dabei wird der reguldre Ausdruck mainRegex betrachtet. Sie
konnen let mainRegex = floatRegex definieren, um den Ausdruck aus der vorherigen Teilaufgabe zu
benutzen, oder Sie definieren einen weiteren regulidren Ausdruck. In der Ausgabe finden Sie eine Be-
schreibung des Aufrufgraphen, die Sie mit Graphviz* verarbeiten konnen sowie F# Code fiir die Akzep-
torfunktion.’

Sie konnen sich selbst weitere regulire Ausdriicke ausdenken und die Rechtsfaktoren zur Ubung von
Hand berechnen. Anschlieend lassen Sie sich mit dem Programm aus dieser Aufgabe den Graphen
generieren und kontrollieren so Ihre hindisch erstellte Losung.

Die Struktur des Programms ist gleich, jedoch kann die Benennung der einzelnen Funktionen und die
Reihenfolge, in der sie definiert sind, abweichen.

“Den Code konnen Sie einfach bei http: //www.webgraphviz.com/ einfiigen, wenn Graphviz bei Ihnen nicht installiert ist.
Die Datei Main. fs enthélt Funktionen, die den Automaton in die textuelle Beschreibung fiir Graphviz und in giiltigen F#
Programmcode (als String) umwandeln.

12

http://www.webgraphviz.com/

	Warm Up (Präsenzaufgabe)
	Ein- und Ausgabe: Würfel-Black-Jack-Spiel (Einreichaufgabe, 26 Punkte)
	Reguläre Ausdrücke automatisiert (Trainingsaufgabe)

