
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 9: Konzepte der Programmierung (WS 2025/26)

Ein- und Ausgabe Auf diesem Übungsblatt betrachten wir Ein- und Ausgabe (Kapitel 7, Effekte). Die
folgenden Funktionen (aus dem Modul Mini.fs) können Sie verwenden:1

putstring: String -> Unit // Schreibt den gegebenen String auf die Konsole.
putline: String -> Unit // Schreibt den gegebenen String gefolgt von einem

// Zeilenumbruch auf die Konsole.
putchar: Char -> Unit // Schreibt das gegebene Zeichen auf die Konsole.
print: 'a -> Unit // Schreibt einen beliebigen Wert (entsprechend formatiert)

// gefolgt von einem Zeilenumbruch auf die Konsole.
getchar: Unit -> Char // Liest das nächste einzelne Zeichen von der Konsole.
getline: Unit -> String // Liest die nächste komplette Zeile von der Konsole.

Die Funktionen, die etwas von der Konsole einlesen, warten so lange bis eine Eingabe verfügbar ist. Für
getchar reicht schon ein einzelnes Zeichen in der Eingabe. Bei getline wird so lange gewartet, bis ein
Zeilenumbruch (Enter-Taste) erzeugt wurde. Zurückgegeben wird der String ohne den Zeilenumbruch.

Weitere hilfreiche Funktionen sind:

readNat: String -> Nat // Nimmt einen String und gibt den Wert als Zahl zurück.
show: 'a -> String // Nimmt einen beliebigen Wert und gibt einen String zurück,

// der den Wert beschreibt , meist in F# Syntax (z.B. "5N").
string: 'a -> String // Wandelt einen beliebigen Wert in einen String um.

In den Beispielen bei den Aufgaben ist die Ausgabe des Programms blau und die Eingabe rot markiert.
Leerzeichen sind durch das Symbol ␣ dargestellt, Zeilenumbrüche durch ←↩.

1In der abstrakten Syntax auf den Vorlesungsfolien und im Skript haben die Funktionen einen Bindestrich im Namen. Auch wenn
diese Schreibweise möglicherweise schöner ist, ist ein Bindestrich in F# kein gültiges Zeichen für Bezeichner. Für die Übung
brauchen wir Funktionsnamen, die in F# tatsächlich gültig sind, daher verzichten wir auf den Bindestrich.

Aufgabe 1 Warm Up (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit der Ein- und Ausgabe vertraut machen. Sie können sich
an den Vorlesungsfolien 715 bis 751 sowie am Skript Kapitel 7.1 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Program.fs aus der Vorlage Aufgabe-9-1.zip.

a) Machen Sie sich mit den oben vorgestellten Funktionen vertraut. Starten Sie den F# Interpreter und
laden Sie das Modul Mini. Führen Sie dazu dotnet fsi Mini.fs aus.

Geben Sie nun die folgenden Ausdrücke jeweils gefolgt von ;; ein:

• putline("Hallo F#!")

• putstring("Hallo F#!")

• putchar('X')

• let tupel = (10N,20N) in print(tupel)

• let x = getline()

• let y = getchar()

• readNat "123N"

• readNat "123"

• show 5N

• string 5N

• show (10N, 'X')

• show [1N; 2N; 3N]

Für diese Teilaufgabe ist keine Bearbeitung der Vorlage notwendig.

> putline("Hallo F#!");;
Hallo F#!
val it : unit = ()

> putstring("Hallo F#!");;
Hallo F#!val it : unit = ()

> putchar('X');;
Xval it : unit = ()

> let tupel = (10N,20N) in print(tupel);;
(10N, 20N)
val it : unit = ()

> let x = getline();;
Jetzt kann ich hier schreiben bis ich Enter drücke←↩
val x : string = "Jetzt kann ich hier schreiben bis ich Enter drücke"

> let y = getchar();;
Zval y : char = 'Z'

> readNat "123N";;
val it : Nat = 123N

> readNat "123";;
val it : Nat = 123N

> show 5N;;
val it : string = "5N"

> string 5N;;
val it : string = "5"

> show (10N, 'X');;
val it : string = "(10N, 'X')"

> show [1N; 2N; 3N];;
val it : string = "[1N; 2N; 3N]"

2

b) Schreiben Sie eine Funktion queryNat: String -> Nat, welche als Argument einen String entgegen-
nimmt, der auf die Konsole ausgegeben wird. Anschließend wird die Eingabe einer natürlichen Zahl
erwartet (die Eingabe wird durch Drücken der Enter-Taste abgeschlossen).

Die eingegebene Zahl soll von der Funktion als Wert vom Typ Nat zurückgegeben werden. Falls die
Eingabe keine gültige natürliche Zahl ist, soll das Programm die Fehlermeldung "Eingabe ist keine

natuerliche Zahl!" ausgeben und die Eingabeaufforderung so lange wiederholen, bis eine gültige Ein-
gabe vorliegt.

Beispielaufruf: queryNat "Bitte geben Sie eine natuerliche Zahl ein: "

Bitte␣geben␣Sie␣eine␣natuerliche␣Zahl␣ein:␣←↩
Eingabe␣ist␣keine␣natuerliche␣Zahl!←↩
Bitte␣geben␣Sie␣eine␣natuerliche␣Zahl␣ein:␣-1←↩
Eingabe␣ist␣keine␣natuerliche␣Zahl!←↩
Bitte␣geben␣Sie␣eine␣natuerliche␣Zahl␣ein:␣a←↩
Eingabe␣ist␣keine␣natuerliche␣Zahl!←↩
Bitte␣geben␣Sie␣eine␣natuerliche␣Zahl␣ein:␣0←↩

let rec queryNat (msg: String): Nat =
putstring msg
let s = getline ()
if s <> "" && String.forall Char.IsDigit s then

readNat s
else putline "Eingabe ist keine natuerliche Zahl!"

queryNat msg

c) Schreiben Sie eine Funktion main, die mit Hilfe der Funktion queryNat drei natürliche Zahlen einliest
und deren Minimum ausgibt. Sie können das Programm mit dotnet run ausführen.

Beispiel:

Bitte␣geben␣Sie␣drei␣natuerliche␣Zahlen␣ein.←↩
Erste␣Zahl:␣a←↩
Eingabe␣ist␣keine␣natuerliche␣Zahl!←↩
Erste␣Zahl:␣815←↩
Zweite␣Zahl:␣4711←↩
Dritte␣Zahl:␣2023←↩
Minimum:␣815←↩

let main(): Unit =
putline "Bitte geben Sie drei natuerliche Zahlen ein."
let n1 = queryNat "Erste Zahl: "
let n2 = queryNat "Zweite Zahl: "
let n3 = queryNat "Dritte Zahl: "
let min3 = min n1 (min n2 n3)
putline ("Minimum: " + (string min3))

3

Aufgabe 2 Ein- und Ausgabe: Würfel-Black-Jack-Spiel
(Einreichaufgabe, 26 Punkte)

Schreiben Sie Ihre Lösungen in die Datei BlackJack.fs aus der Vorlage Aufgabe-9-2.zip.

In dieser Aufgabe werden wir eine einfache Variante des Black Jack-Spiels2 implementieren. Eine Anzahl
an Spielern würfelt reihum. Jeder Spieler addiert die Werte, die er würfelt auf. Ziel ist es, so nah wie möglich
an den Wert 21 zu kommen, ohne diesen jedoch zu überschreiten. Im Fall des Überschreitens verliert der
Spieler automatisch. Jeder Spieler hat die Möglichkeit, auszusteigen, wobei er seine Punktzahl behält.

In den folgenden Aufgabenteilen werden wir das Würfel-Black-Jack-Spiel Schritt für Schritt implementie-
ren.

Wir modellieren einen Spieler durch einen String. Den Zustand des Spielers, also den aktuellen Spielstand
und ob er noch teilnimmt, speichern wir in

type PlayerState = { score : Nat ; active : Bool }

Den Gesamtspielstand speichern wir in einer MapUnsortedList<String, PlayerState>. Von Aufgabe 2 auf
Übungsblatt 7 kennen Sie MapSortedList<'k, 'v>. Der Datentyp MapUnsortedList<'k, 'v> funktioniert ganz
analog. Die Funktionen insert<'k, 'v>: 'k*'v -> MapUnsortedList<'k, 'v> -> MapUnsortedList<'k, 'v> und
tryFind<'k, 'v>: 'k -> MapUnsortedList<'k, 'v> -> Option<'v> stehen Ihnen zur Verfügung. Wir verwen-
den die Abkürzung

type Players = MapUnsortedList <String, PlayerState >

Das Ein- und Ausgabeverhalten des Spiels muss zwingend einer fest vorgegebenen Struktur folgen!
Beachten Sie die Hinweise auf der ersten Seite.

a) Schreiben Sie eine Funktion queryBool: String -> Bool, welche als Argument einen String entgegen-
nimmt, der auf die Konsole ausgegeben wird. Anschließend wird die Eingabe von "ja" oder "nein"

erwartet (die Eingabe wird durch Drücken der Enter-Taste abgeschlossen).

Wird "ja" eingegeben, soll true und bei "nein" soll false zurückgegeben werden. Falls die Eingabe
weder "ja" noch "nein" ist, soll das Programm die Fehlermeldung "Eingabe ist weder ja noch nein!"

ausgegeben und die Eingabeaufforderung so lange wiederholt werden, bis eine gültige Eingabe vorliegt.

Beispielaufruf: queryBool "Spieler A ist an der Reihe. Moechte Spieler A wuerfeln? (ja/nein)"

Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣Spieler␣A␣wuerfeln?␣(ja/nein)←↩
Eingabe␣ist␣weder␣ja␣noch␣nein!←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣Spieler␣A␣wuerfeln?␣(ja/nein)j←↩
Eingabe␣ist␣weder␣ja␣noch␣nein!←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣Spieler␣A␣wuerfeln?␣(ja/nein)yes←↩
Eingabe␣ist␣weder␣ja␣noch␣nein!←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣Spieler␣A␣wuerfeln?␣(ja/nein)ja←↩

let rec queryBool (msg: String): Bool =
putstring msg
let s = getline ()
if s = "ja" then

true
elif s = "nein" then

false
else

putline "Eingabe ist weder ja noch nein!"
queryBool msg

2https://de.wikipedia.org/wiki/Black_Jack

4

https://de.wikipedia.org/wiki/Black_Jack

b) Schreiben Sie eine Funktion queryMove: (Unit -> Nat) -> String -> Players -> Players, welche einen
„Würfel“, den wir durch eine Funktion mit dem Typen Unit -> Nat modellieren, einen Spieler sowie den
Gesamtspielstand nimmt. Der Spieler soll mithilfe von queryBool gefragt werden, ob er würfeln möchte.
Falls er dies bejaht, soll der Würfel „geworfen“ werden und die Augenzahl dem Spieler zugeschrieben
werden. Außerdem soll die gewürfelte Zahl ausgegeben werden. Der Zustand des Spielers soll aktuali-
siert werden, d.h. die Augenzahl soll auf seinen Punktestand addiert werden. Ist der neue Punktestand
zudem größer als 21, wird active auf false gesetzt. Falls der Spieler die Frage verneint, soll active des
Spielers auf false gesetzt werden. In beiden Fällen wird der aktualisierte Gesamtstand zurückgegeben.

Im Fall, dass der Spieler gar nicht existiert, soll der Spielstand unverändert zurückgegeben werden. Sie
müssen außerdem nicht vorher überprüfen, ob der Spieler noch aktiv ist.

Beispielaufruf:
let spielstand = [("A", { score = 10N; active = true }); ("B", { score = 15N; active = true })]

queryMove gdpWuerfel "A" spielstand

Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣y←↩
Eingabe␣ist␣weder␣ja␣noch␣nein!←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣4←↩

Im Beispiel soll [("A", { score = 14N; active = true }); ("B", { score = 15N; active = true })] zu-
rückgegeben werden.

let queryMove (dice: Unit -> Nat) (player: String) (players: Players): Players =
let cont = queryBool ("Spieler " + player + " ist an der Reihe. "

+ "Moechte " + player + " wuerfeln? (ja/nein) ")
let maybeOldState = tryFind player players
match maybeOldState with

| None -> players
| Some oldState ->

if cont
then

let diceValue = dice ()
putline ("Wuerfeln... Der Wuerfel zeigt "

+ (string diceValue))
let newScore = oldState.score + diceValue
let newState = { score = newScore

; active = oldState.active && newScore <= 21N}
insert (player, newState) players

else
insert (player, {oldState with active = false }) players

c) Schreiben Sie eine Funktion scoreOveriew: Players -> Unit, welche den gegebenen Gesamtspielstand
ausgibt.

Beispielaufruf: scoreOverview spielstand

Aktueller␣Spielstand:←↩
A:␣10␣Punkte←↩
B:␣15␣Punkte←↩

let scoreOverview (players: Players): Unit =
putline "Aktueller Spielstand:"
let rec h (players: Players): Unit =

match players with
| [] -> ()
| (name, score)::restPlayers ->

putline (name + ": " + (string score.score) + " Punkte")
h restPlayers

h players

5

d) Schreiben Sie eine Funktion evaluateScore: Players -> Unit, welche den gegebenen Gesamtspielstand
nimmt und ausgibt, wer gewonnen hat. Sollte niemand gewonnen haben (weil alle Spieler mehr als 21
Punkte haben), soll das ausgegeben werden.

Sie können ignorieren, ob der Spieler aktiv ist oder nicht. Bei Gleichstand können Sie willkürlich einen
Sieger ermitteln.

Beispielaufruf: evaluateScore spielstand

Spieler␣B␣hat␣mit␣15␣Punkten␣gewonnen.←↩

Beispielaufruf: evaluateScore [("A", { score = 22N; active = false })]

Kein␣Spieler␣hat␣gewonnen.←↩

let evaluateScore (players: Players): Unit =
let candidates = players

|> List.filter (fun (_, s) -> s.score <= 21N)
match candidates with

| [] -> putline "Kein Spieler hat gewonnen."
| _ -> let (name, state) = List.maxBy (fun (_, s) -> s.score) candidates

putline ("Spieler " + name + " hat mit "
+ (string state.score) + " Punkten gewonnen.")

e) Schreiben Sie eine Funktion blackjack: (Unit -> Nat) -> String -> Players -> Unit, welche einen „Wür-
fel“, einen Spielernamen und den Gesamtspielstand nimmt. Die Funktion soll den Spielstand ausgeben
und dann den Spieler ziehen lassen. Anschließend soll geprüft werden, ob das Spiel fertig ist. In diesem
Fall geben Sie aus, wer gewonnen hat. Andernfalls soll das Spiel mit dem nächsten Spieler fortgeführt
werden.

Sie dürfen davon ausgehen, dass der Spielername tatsächlich in der Liste existiert.

Hinweis: Verwenden Sie die vorgefertigte Funktion nextPlayer: String -> Players -> Option<String>.
Diese nimmt den aktuellen Spielernamen und den aktuellen Spielstand und gibt aus, wer der nächste
Spieler ist. Sollte es keinen nächsten Spieler geben, wird None zurückgegeben. In diesem Fall ist das
Spiel beendet.

Beispielaufruf: blackjack gdpWuerfel "A" spielstand

Aktueller␣Spielstand:←↩
A:␣10␣Punkte←↩
B:␣15␣Punkte←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣3←↩
Aktueller␣Spielstand:←↩
A:␣13␣Punkte←↩
B:␣15␣Punkte←↩
Spieler␣B␣ist␣an␣der␣Reihe.␣Moechte␣B␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣3←↩
Aktueller␣Spielstand:←↩
A:␣13␣Punkte←↩
B:␣18␣Punkte←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣2←↩
Aktueller␣Spielstand:←↩
A:␣15␣Punkte←↩
B:␣18␣Punkte←↩
Spieler␣B␣ist␣an␣der␣Reihe.␣Moechte␣B␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣4←↩
Aktueller␣Spielstand:←↩
A:␣15␣Punkte←↩
B:␣22␣Punkte←↩

6

Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣4←↩
Aktueller␣Spielstand:←↩
A:␣19␣Punkte←↩
B:␣22␣Punkte←↩
Spieler␣A␣ist␣an␣der␣Reihe.␣Moechte␣A␣wuerfeln?␣(ja/nein)␣nein←↩
Spieler␣A␣hat␣mit␣19␣Punkten␣gewonnen.←↩

let rec blackjack (dice: Unit -> Nat) (player: String) (players: Players): Unit =
scoreOverview players
let newPlayers = queryMove dice player players
let next = nextPlayer player newPlayers
match next with

| None -> evaluateScore newPlayers
| Some nextName -> blackjack dice nextName newPlayers

f) Schreiben Sie eine Funktion main, die zunächst den String "Willkommen zu Wuerfel-Black-Jack"! ausgibt
und anschließend das blackjack Spiel mit der vorgefertigten Funktion gdpWuerfel als Würfel, "Harry" als
beginnenden Spieler und der Liste gdpPlayers als initialen Spielstand startet.

Sie können das fertige Spiel mit dem Befehl dotnet run ausführen.

Beispiel:

Willkommen␣zu␣Wuerfel-Black-Jack!←↩
Aktueller␣Spielstand:←↩
Harry:␣0␣Punkte←↩
Lisa:␣0␣Punkte←↩
Spieler␣Harry␣ist␣an␣der␣Reihe.␣Moechte␣Harry␣wuerfeln?␣(ja/nein)␣ja←↩
Wuerfeln...␣Der␣Wuerfel␣zeigt␣1←↩
Aktueller␣Spielstand:←↩
Harry:␣1␣Punkte←↩
Lisa:␣0␣Punkte←↩
Spieler␣Lisa␣ist␣an␣der␣Reihe.␣Moechte␣Lisa␣wuerfeln?␣(ja/nein)␣nein←↩
Aktueller␣Spielstand:←↩
Harry:␣1␣Punkte←↩
Lisa:␣0␣Punkte←↩
Spieler␣Harry␣ist␣an␣der␣Reihe.␣Moechte␣Harry␣wuerfeln?␣(ja/nein)␣\<nein←↩
Spieler␣Harry␣hat␣mit␣1␣Punkten␣gewonnen.←↩

let main(): Unit =
putline "Willkommen zu Wuerfel-Black-Jack!"
blackjack gdpWuerfel "Harry" gdpPlayers

g) Achten Sie darauf, dass Ihr Programmcode möglichst lesbar ist und keine unnötig komplexen Ausdrücke
enthält (vgl. Übungsblatt 5 Aufgabe 3). Dafür vergeben wir bei dieser Aufgabe 3 Punkte.

Siehe Lösungsvorschläge oben.

7

Aufgabe 3 Reguläre Ausdrücke automatisiert (Trainingsaufgabe)

Motivation: Anhand dieser freiwilligen Zusatzaufgabe können Sie nachvollziehen wie Akzeptoren für regu-
läre Ausdrücke automatisiert generiert werden können.

Schreiben Sie Ihre Lösungen in die Datei Program.fs aus der Vorlage Aufgabe-9-3.zip.

Harry Hacker erinnert sich, warum wir den seiner Ansicht nach komplizierten Weg über die Rechtsfaktoren
gehen, anstatt uns passende Funktionen einfach so auszudenken: Das Argument für die Rechtsfaktoren ist,
dass sie sich komplett automatisiert berechnen lassen. Dies möchte Harry Hacker nun einmal ausprobieren.
Helfen Sie ihm, die dazu nötigen Funktionen zu implementieren. Folgenden Typ hat er schon definiert, um
reguläre Ausdrücke in F# beschreiben zu können:

type Reg<'T> =
| Eps // das leere Wort
| Sym of 'T // einzelnes Zeichen / Terminalsymbol
| Cat of Reg<'T> * Reg<'T> // Konkatenation / Sequenz
| Empty // die leere Sprache
| Alt of Reg<'T> * Reg<'T> // Alternative
| Rep of Reg<'T> // Wiederholung

Beispiel zur Beschreibung des regulären Ausdrucks (ab)* in diesem Typ:

type Alphabet = | A | B
let abstar: Reg<Alphabet> = Rep (Cat (Sym A, Sym B))

Tipp: Für die Teilaufgaben a und b müssen Sie lediglich die Definitionen aus den Vorlesungsfolien in gülti-
gen F#-Code übertragen. Teil c ist etwas komplizierter, d und e sind wieder einfacher.

a) Schreiben Sie eine Funktion nullable: Reg<'T> -> Bool, die berechnet, ob der gegebene reguläre Aus-
druck nullable ist, d.h. ob er das leere Wort ϵ akzeptiert.

Beispiele:
nullable abstar = true // abstar aus der Definition oben

nullable Eps = true

nullable (Sym A) = false

let rec nullable <'T> (r: Reg<'T>): Bool =
match r with
| Sym _ -> false
| Eps -> true
| Cat (r1, r2) -> nullable r1 && nullable r2
| Empty -> false
| Alt (r1, r2) -> nullable r1 || nullable r2
| Rep _ -> true

8

b) Schreiben Sie eine Funktion divide: 'T -> Reg<'T> -> Reg<'T> die ein Zeichen x aus dem Alphabet
sowie einen regulären Ausdruck r nimmt und den Rechtsfaktor x\r berechnet.

Beispiele:
divide A (Sym A) = Eps

divide B (Sym A) = Empty

divide A (Cat (Sym A, Sym B)) = Alt (Cat (Eps, Sym B), Cat (Empty, Empty))

Das Resultat im letzten Beispiel lässt sich vereinfachen zu Sym B. Sie brauchen keine Vereinfachungen
einzubauen, in Helpers.fs steht eine Funktion simplify: Reg<'T> -> Reg<'T> bereit, die derartige Ver-
einfachungen durchführt. Damit ist dann simplify (divide A abstar) = Cat (Sym B, abstar).

let rec divide<'T when 'T: comparison > (x: 'T) (r: Reg<'T>): Reg<'T> =
match r with
| Sym a -> if a = x then Eps else Empty
| Eps -> Empty
| Cat (r1, r2) when nullable r1 ->

Alt (
Cat (divide x r1, r2),
divide x r2

)
| Cat (r1, r2) -> Cat (divide x r1, r2)
| Empty -> Empty
| Alt (r1, r2) -> Alt (divide x r1, divide x r2)
| Rep r -> Cat (divide x r, Rep r)

c) Nun wollen wir nicht nur einen Rechtsfaktor berechnen, sondern alle. Also auch die Rechtsfaktoren der
Rechtsfaktoren usw. Wir nutzen dazu folgenden Datentyp:

type Automaton <'T when 'T: comparison > = Map<Reg<'T>, Map<'T, Reg<'T>> * Bool>

Wir betrachten also eine Map (endliche Abbildung), deren Schlüssel reguläre Ausdrücke sind. Als Werte
in dieser Map sind Paare gespeichert. Die zweite Komponente des Paars ist ein boolescher Wert, der
angibt, ob der reguläre Ausdruck nullable ist. Die erste Komponente des Paars ist eine weitere Map, die
wiederum Zeichen des Eingabealphabets auf reguläre Ausdrücke abbildet.

Wenn der reguläre Ausdruck r auf das Paar (m, false) abgebildet wird und m das Zeichen x auf den
regulären Ausdruck r' abbildet, dann bedeutet das, dass x\r = r' ist und dass r nicht nullable ist.

Das beschriebene Konstrukt ist ein endlicher Automat: Jeder reguläre Ausdruck ist ein Zustand des
Automaten. Die Map<'T, Reg<'T>> beschreibt die Transitionen vom Zustand des regulären Ausdrucks
ausgehend. Der boolesche Wert (zweite Komponente des Paars) gibt an, ob es sich beim jeweiligen
Zustand um einen akzeptierenden Zustand handelt. Daher haben wir diesen Datentyp Automaton genannt.

Machen Sie sich mit dem Map Modul aus der Standardbibliothek3 vertraut, insbesondere mit Map.empty,
Map.add, Map.find und Map.containsKey.

Schreiben Sie eine Funktion calculateAutomaton: Reg<'T> -> Automaton<'T>, die für einen gegebenen
regulären Ausdruck einen solchen Automaten berechnet. Gehen Sie dabei wie folgt vor:

1. Definieren Sie sich eine rekursive Hilfsfunktion, die als Eingabe einen Automaton<'T> sowie einen
regulären Ausdruck r vom Typ Reg<'T> erhält und einen aktualisierten Automaton<'T> zurückgibt.

2. Die Hilfsfunktion überprüft, ob r bereits im Automaten enthalten ist, also ob dieser Schlüssel in
der Map existiert. Ist dies der Fall, dann wird der Automat unverändert zurückgegeben.

3. Andernfalls wird der gegebene Automat aktualisiert, indem zum regulären Ausdruck r zunächst
das Paar (Map.empty, nullable r) hinterlegt wird. Dies ist notwendig, damit rekursive Aufrufe in
die Abbruchbedingung aus dem vorherigen Schritt gelangen.

3https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html

9

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html

4. Mit cases<'T>() erhalten Sie eine Liste vom Typ List<'T>, die alle Symbole des Eingabealphabets
enthält. Beispielsweise ist cases<Alphabet>() = [A; B] (für den im Beispiel oben definierten Typ
Alphabet). Für jedes dieser Symbole x berechnen wir den Rechtsfaktor r' = x\r. Nutzen Sie die
Funktion simplify um r' zu vereinfachen.
Rufen Sie nun die Hilfsfunktion rekursiv auf, um r' und alle seine Rechtsfaktoren in den Automa-
ten einzutragen. Anschließend tragen Sie in den Automaten ein, dass der Rechtsfaktor x\r = r' ist.
Dazu müssen Sie zunächst die innere Map für die Transitionen von r aktualisieren und die aktuali-
sierte Map anschließend in die äußere Map eintragen. Achten Sie darauf, die zweite Komponente
des Paars (also ob r nullable ist) nicht zu verändern.
Tipp: Da Sie den Automaten schrittweise für jedes Symbol aus dem Alphabet aktualisieren müs-
sen, bietet sich die Verwendung von List.fold an.

5. Zum Schluss muss die Haupt-Funktion die Hilfsfunktion mit einem leeren Automaten (Map.empty)
und dem gegebenen regulären Ausdruck aufrufen.

let calculateAutomaton <'T when 'T: comparison > (r: Reg<'T>): Automaton <'T> =
let rec insert (automaton: Automaton <'T>) (r: Reg<'T>): Automaton <'T> =

if Map.containsKey r automaton then automaton
else

let automaton = automaton |> Map.add r (Map.empty, nullable r)
cases<'T>() |> List.fold (

fun automaton x ->
let r' = divide x r |> simplify
let automaton = insert automaton r'
let (transitions , isNullable) = automaton |> Map.find r
let transitions = transitions |> Map.add x r'
automaton |> Map.add r (transitions , isNullable)

) automaton
insert Map.empty r

d) Wir definieren nun type Alphabet = | Zero | One | Dot. Definieren Sie einen Wert floatRegex vom Typ
Reg<Alphabet>, um den folgenden regulären Ausdruck für Fließkommazahlen zu beschreiben:
((0|1(0|1)*).(0|1)*) | (.(0|1)(0|1)*)

type Alphabet = | Zero | One | Dot

let floatRegex: Reg<Alphabet> =
Alt (

Cat (
Alt (

Sym Zero,
Cat (

Sym One,
Rep (Alt (Sym Zero, Sym One))

)
),
Cat (

Sym Dot,
Rep (Alt (Sym Zero, Sym One))

)
),
Cat (

Sym Dot,
Cat (

Alt (Sym Zero, Sym One),
Rep (Alt (Sym Zero, Sym One))

)
)

)

type Alphabet2 = | A | B

let alphabetRegex: Reg<Alphabet2 > = // (ab)(ab)*|(ba)(ba)*
Alt (

Cat (
Cat (Sym A, Sym B),
Rep (Cat (Sym A, Sym B))

10

),
Cat (

Cat (Sym B, Sym A),
Rep (Cat (Sym B, Sym A))

)
)

11

e) Starten Sie das Programm mit dotnet run. Dabei wird der reguläre Ausdruck mainRegex betrachtet. Sie
können let mainRegex = floatRegex definieren, um den Ausdruck aus der vorherigen Teilaufgabe zu
benutzen, oder Sie definieren einen weiteren regulären Ausdruck. In der Ausgabe finden Sie eine Be-
schreibung des Aufrufgraphen, die Sie mit Graphviz4 verarbeiten können sowie F# Code für die Akzep-
torfunktion.5

Sie können sich selbst weitere reguläre Ausdrücke ausdenken und die Rechtsfaktoren zur Übung von
Hand berechnen. Anschließend lassen Sie sich mit dem Programm aus dieser Aufgabe den Graphen
generieren und kontrollieren so Ihre händisch erstellte Lösung.

Die Struktur des Programms ist gleich, jedoch kann die Benennung der einzelnen Funktionen und die
Reihenfolge, in der sie definiert sind, abweichen.

4Den Code können Sie einfach bei http://www.webgraphviz.com/ einfügen, wenn Graphviz bei Ihnen nicht installiert ist.
5Die Datei Main.fs enthält Funktionen, die den Automaton in die textuelle Beschreibung für Graphviz und in gültigen F#

Programmcode (als String) umwandeln.

12

http://www.webgraphviz.com/

	Warm Up (Präsenzaufgabe)
	Ein- und Ausgabe: Würfel-Black-Jack-Spiel (Einreichaufgabe, 26 Punkte)
	Reguläre Ausdrücke automatisiert (Trainingsaufgabe)

