Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik
Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 10: Konzepte der Programmierung (WS 2025/26)

Zustand Bisher haben wir nur mit Bezeichnern gearbeitet, die an unveridnderliche Werte gebunden sind:

let x = 1IN // Definiert einen Bezeichner x, der an den Wert 1N gebunden ist.
let £ () = print x // f schreibt den Wert x auf die Konsole.

f() // Schreibt 1IN auf die Konsole.

let x = 2N // Definiert einen neuen Bezeichner mit dem gleichen Namen.

f() // Schreibt 1IN auf die Konsole, da f den alten Bezeichner benutzt.

Nun haben wir in der Vorlesung Speicherzellen kennengelernt. Wir veridndern das Programm etwas, sodass
die zweite Ausfithrung von f den neuen Wert auf die Konsole schreibt:

let x = ref IN // Allokiert eine Speicherzelle, die den Wert 1N enthdlt, und definiert
// einen Bezeichner x, der an die Adresse dieser Speicherzelle gebunden ist.

let £ (O = print (!x) // f schreibt den Inhalt der Speicherzelle an x auf die Konsole.

f() // Schreibt 1N auf die Konsole.

x := 2N // Speichert einen neuen Wert in die Speicherzelle an Adresse x.

f() // Schreibt 2N auf die Konsole.

Eine zweite Variante sind verdnderliche Bezeichner. Wir konnen das Programm auch so schreiben:

let mutable x = 1IN

let £ () = print x

f() // Schreibt 1N auf die Konsole.
X <- 2N

f() // Schreibt 2N auf die Konsole.



Aufgabe 1 Semantik mit Zustand (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let x = ref 1IN
let y = ref 2N
let i = ref y

werten zu der folgenden Umgebung aus:
d={x ay, y— ay, i az}

Hierbei bezeichnen ag, a; und a; Adressen. Der dazugehorige Speicher ist:
o ={ag+— 1IN, a; — 2N, ay — a;}

Der folgende Ausdruck soll in der Umgebung 6 und dem Speicher o ausgewertet werden. Geben Sie fiir den
Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

X := ly + 3N // o
y = 1('1) + 'x /) o
i = x // o3
i := 'y + 1IN // T4

Bezeichner X y i

Adresse ap a; a»

o IN 2N ai

(on] 5N 2N aj

lop) 5N N ap

g3 5N N ap

04 8N TN ao




Aufgabe 2 Handzahler (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den Grundlagen von Speicherzellen vertraut machen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Counters. fs aus der Vorlage Aufgabe-10-2.zip.

Zur Finlasskontrolle in einem Supermarkt muss gezihlt werden, wie viele Kund*innen sich darin befinden.
Der Supermarktbetreiber beauftragt Lisa Lista und Harry Hacker damit, Handzédhler zu entwickeln. Diese
kleinen praktischen Gerite haben zwei Taster und eine Anzeige fiir den aktuellen Zihlerstand. Der Reset-
Taster setzt den Zihler auf Null zuriick. Der Inkrement-Taster erhoht den Zihlerstand um eins.

a) Harrys Vorschlag ist nun, den Zahlerstand in einer mutable Variable zu speichern und mit drei Funktionen
darauf zuzugreifen:

reset: Unit -> Unit // stellt den Zdhler auf Null
increment: Unit -> Unit // erhoht den Zdhler um eins
get: Unit -> Nat // gibt den aktuellen Zdhlerstand zurtck

Implementieren Sie diese drei Funktionen und verwenden Sie dazu let mutable.

let mutable counter = ON

let reset(): Unit =
counter <- ON

let increment(): Unit =
counter <- counter + 1N

let get(): Nat =
counter

b) Lisa merkt an, dass man so aber immer nur einen Zihler gleichzeitig benutzen kann. Der Supermarkt
hat jedoch zwei Tiiren und es wire praktisch, wenn man an jeder der beiden Tiiren einen eigenen Zihler
verwenden kann. Sie schlidgt daher folgende Modellierung vor:

type Counter = Ref<Nat>

create: Unit -> Counter // gibt einen neuen Zihler zurick

reset2: Counter -> Unit // stellt den gegebenen Zdhler auf Null

increment2: Counter -> Unit // erhoht den gegebenen Zdhler um eins

get2: Counter -> Nat // gibt den aktuellen Stand des gegebenen Zahlers =zuriick

Implementieren Sie diese Funktionen.

type Counter = Ref<Nat>

let create(): Counter =
ref ON

let reset2(c: Counter): Unit =
c := ON

let increment2(c: Counter): Unit =
c := !c + 1N

let get2(c: Counter): Nat =
Ic




Aufgabe 3 Semantik mit Zustand (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let i = ref 2N
let j = ref 4N
let x = ref true
let a = ref i
let b = ref j

werten zu der folgenden Umgebung aus:
o={i—ag, ja, x> ay, a as, b ay}

Hierbei bezeichnen ay, a1, as, az und a4 Adressen. Der dazugehorige Speicher ist:
o ={ayg— 2N, a; — 4N, ay - true, az — ay, as — ai}

Die folgenden Ausdriicke sollen nun jeweils in der Umgebung ¢ und dem Speicher o ausgewertet werden.
Geben Sie fiir jeden Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

Beachten Sie: In jeder Teilaufgabe ist der Speicher vor der Auswertung jeweils o, die Effekte sind also iiber
die Teilaufgaben hinweg nicht kumulativ, innerhalb einer Teilaufgabe jedoch schon.

a) x := if !x then !(la) < !i else !i = !j // oy
i := !'(ta) + (if !'x then 1IN else 2N) // o
Bezeichner i j X a b
Adresse aop a; ar as ay
o 2N AN true ap ap
o1 2N 4N false ap ai
o) 4N 4N false ao ai




b) i := ON ; j := 10N // o
while !i < 3N do

(if !(x := not !'x; x) then j := !(!b) + !i) ; ta = !'i + 1IN ; // 02, 03, 04
Bezeichner i j X a b
Adresse agp ai ar as ay
o 2N AN true ao ap
o1 ON 10N true ap ap
o IN 10N false ap ap
03 2N 1IN true ag ap
o4 3N 1IN false ao aj




Aufgabe 4 Veranderbare Listen (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Speicherzellen anhand eines komplexeren Pro-
blems einiiben. Sie konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Lists. fs aus der Vorlage Aufgabe-10-4.zip.

Wir verwenden einen von der Vorlesung abweichenden Typ fiir verdnderbare Listen.

type Item<'a> =
{ mutable elem: 'a
mutable next: Option<Item<'a>> }

type MList<'a> =
{ mutable first: Option<Item<'a>>
mutable last: Option<Item<'a>>
mutable size: Nat }

Zunidchst definieren wir einen Typ Item<'a>, welcher die Listenelemente reprisentieren soll. Jedes Listen-
element besteht aus einem Wert und ggf. einer Referenz auf ein weiteres Listenelement. Das letzte Element
einer Liste hat kein Folgeelement, daher hat fiir dieses Element next den Wert None. Die Liste insgesamt wird
durch den Typ MList<'a> représentiert. Dieser Typ ist gegeniiber herkommlichen Listen etwas erweitert. Zum
Einen speichern wir Referenzen sowohl zum ersten als auch zum letzten Element der Liste. Dadurch kénnen
wir neue Elemente sehr effizient an den Anfang und ans Ende der Liste anhiingen (zur Erinnerung: bei her-
kommlichen Listen miissen wir ganz durch die Liste durchgehen, um ein Element ans Ende anzuhdngen).
Zum Anderen merken wir uns mit size immer die aktuelle Linge der Liste.

Hinweis: Es ist nicht Sinn dieser Aufgabe, entsprechende Funktionen fiir herkommliche Listen zu schreiben
und zwischen verdnderbaren Listen und herkommlichen Listen hin- und herzukonvertieren. Solche Abgaben
werden mit O Punkten bewertet.

a) Schreiben Sie eine Funktion isEmpty<'a>: MList<'a> -> Bool, die eine verdnderbare Liste nimmt und
zuriickgibt, ob diese leer ist. Verwenden Sie das Feld size, um zu ermitteln, ob die Liste leer ist.

let isEmpty<'a> (1l: MList<'a>): Bool =
l.size = ON

b) Schreiben Sie eine Funktion appendFront<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine
verdnderbare Liste nimmt und diesen Wert vorne an die Liste anhéngt.

Hinweis: Bei einer einelementigen Liste miissen first und last Referenzen auf dasselbe Objekt sein.

let appendFront<'a> (v: 'a) (l: MList<'a>): Unit =
let elem = Some { elem = v; next = 1.first }
1.first <- elem
if 1.size = ON then 1l.last <- elem
l.size <- l.size + 1N

Zunichst konstruieren wir das neue Listenelement elem vom Typ Item<'a> mit dem Wert v und der
Referenz auf das bisher erste Element der Liste. Danach setzen wir die Referenz fiir das erste Listen-
element auf das neu konstruierte Element. Wenn wir in eine leere Liste einfiigen (das ist der Fall, wenn
size=0N, wir konnten alternativ z.B. auch priifen, ob 1.1ast den Wert None hat), miissen wir auch die
Referenz fiir das letzte Element der Liste auf das neue Element setzen. Zu guter Letzt inkrementieren
WIT size.




¢) Schreiben Sie eine Funktion appendBack<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine ver-
dnderbare Liste nimmt und diesen Wert ans Ende der Liste anhéngt.

Hinweis: Bei einer einelementigen Liste miissen first und last Referenzen auf dasselbe Objekt sein.

let appendBack<'a> (v: 'a) (l: MList<'a>): Unit =
let elem = Some { elem = v; next = None }
match 1.last with
| None -> 1l.first <- elem
| Some lastElem -> lastElem.next <- elem
l.last <- elem
l.size <- l.size + 1N

Wir beginnen wieder damit das neue Listenelement zu konstruieren. Da dieses ans Ende der Liste
angehédngt werden soll, gibt es keine Referenz auf ein Folgeelement, also ist next = None.

Dann unterscheiden wir zwei Fille: Gibt es in der Liste noch kein letztes Element, weil die Liste leer
ist, so miissen wir zunichst die Referenz fiir das erste Element der Liste auf das neue Element setzen.
Wenn die Liste nicht leer ist, besitzt sie ein letztes Element, dessen next Referenz wir auf das neue
Element setzen.

Danach aktualisieren wir die Referenz fiir das letzte Element und inkrementieren size.

d) Schreiben Sie eine Funktion get<'a>: Nat -> MList<'a> -> Option<'a>, die einen Index sowie eine ver-
dnderbare Liste nimmt und den Wert des Listenelements an der Position des Index zuriickgibt. Beachten
Sie, dass das erste Element der Liste den Index O hat. Liegt der Index auBerhalb der Liste, soll None
zuriickgegeben werden. Die Liste soll durch die get Funktion nicht verdndert werden.

Hinweis: Um an eine bestimmte Position in der Liste zu navigieren, konnen Sie sich zum Beispiel eine
rekursive Hilfsfunktion definieren, die in einem ihrer Argumente eine natiirliche Zahl erwartet, die bei
jedem Durchlauf um eins heruntergezdhlt wird. Wenn Sie also index als Argument iibergeben und in
Jjedem Schritt ein Element in der Liste weitergehen, sind Sie an der Position index, sobald das Argument
0 ist.

let get<'a> (index: Nat) (l: MList<'a>): Option<'a> =
let rec h (i: Nat) (item: Option<Item<'a>>) =
match item with
| None -> None
| Some e ->
if i = ON then Some e.elem
else h (i-1N) e.next
h index 1.first

Dem Hinweis folgend definieren wir eine rekursive Hilfsfunktion, die wir mit dem gesuchten Index
und dem ersten Listenelement aufrufen. Die Idee ist, dass wir in der Hilfsfunktion so lange mit der
next Referenz zum jeweils nédchsten Element springen und bei jedem Schritt den Zihler i dekremen-
tieren, bis wir insgesamt index Elemente durchlaufen haben. Der Zihler steht dann auf O und item ist
das gesuchte Element.

Wir priifen hier jedoch zuerst, ob es iiberhaupt ein aktuelles Element gibt. Damit fangen wir den Fall
ab, dass der Index auflerhalb der Liste liegt. Gibt es das Element, priifen wir, ob wir an der gesuch-
ten Position sind und falls ja, konnen wir den dort hinterlegten Wert mit Some e.elem zuriickgeben.
Wenn die Position noch nicht erreicht ist, rufen wir die Funktion rekursiv auf, um zum nichsten
Listenelement zu springen. Dazu {ibergeben wir einen dekrementierten Zahler sowie das ndchste Lis-
tenelement.




e) Schreiben Sie eine Funktion update<'a>: Nat -> 'a -> MList<'a> -> Unit, die einen Index sowie einen
Wert und eine verdnderbare Liste nimmt und in der Liste das Element an der Position des Index durch
den iibergebenen Wert ersetzt. Liegt der iibergebene Index auflerhalb der Liste, so soll die Funktion
update die Liste nicht verdndern.

Tipp: Verwenden Sie eine rekursive Hilfsfunktion dhnlich wie bei Aufgabenteil d).

let update<'a> (index: Nat) (v: 'a) (l: MList<'a>): Unit =
let rec h (i: Nat) (item: Option<Item<'a>>) =
match item with
| None -> ()
| Some e ->
if i = ON then e.elem <- v
else h (i-1N) e.next
h index 1.first

Bis auf zwei kleine Anderungen gehen wir genauso vor wie im letzten Aufgabenteil. Fiir den Fall,
dass es kein Listenelement mehr gibt, obwohl der Zéhler noch nicht 0 ist (Index auBerhalb der Liste),
geben wir direkt das leere Tupel (O zuriick. Wenn i = oN ist, sind wir an der gesuchten Position und
konnen den Wert des Elements mit e.elem <- v aktualisieren.

f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion remove<'a>: Nat -> MList<'a> -> Unit, die einen
Index und eine veridnderbare Liste nimmt und das Element an der Position des Index aus der Liste ent-
fernt.

let remove<'a> (index: Nat) (l: MList<'a>): Unit =
let rec h (i: Nat) (prev: Option<Item<'a>>) (curr: Option<Item<'a>>) =
match curr with
| None -> ()
| Some c ->
if i = ON then
match prev with
| None -> 1.first <- c.next
| Some p -> p.next <- c.next
match c.next with
| None -> l.last <- prev
I - > O
l.size <- l.size - 1N
else
h (i-1N) curr c.next

h index None 1.first

Wir erweitern unsere Idee mit der rekursiven Hilfsfunktion dahingehend, dass wir nun sowohl das
aktuelle Element curr als auch das vorherige Element prev iibergeben.

Beim Aufruf der rekursiven Hilfsfunktion iibergeben wir als aktuelles Element das erste Listenele-
ment. Da kein vorheriges Element existiert, iibergeben wir fiir prev den Wert None

Wir behandeln zuerst wieder den Fall, dass es kein aktuelles Listenelement gibt (index liegt auerhalb
der Liste). AnschlieBend priifen wir, ob wir an der gesuchten Position stehen (i = oN).

Falls nicht, rufen wir die Hilfsfunktion rekursiv auf, dabei wird der Zahler i dekrementiert. Als ,,neu-
es vorheriges* Element iibergeben wir curr und als ,,neues aktuelles* Element den Nachfolger c.next
(der, falls index auBerhalb der Liste liegt, irgendwann None ist und damit im rekursiven Aufruf abge-
fangen wird).

Falls wir uns jedoch an der gesuchten Position in der Liste befinden, konnen wir das Element ent-
fernen. Dabei miissen wir einige Spezialfille beachten. Zunichst priifen wir, ob es ein vorheriges
Element prev gibt. Wenn es kein vorheriges Element gibt, heif3t das, dass wir das Element am Anfang
der Liste 16schen mochten. Dann miissen wir die Referenz der Liste fiir das erste Element dndern. Wir




aktualisieren es mit 1.first <- c.next auf das vormals zweite Element in der Liste.

Existiert ein vorheriges Element, so muss dessen next Referenz auf die next Referenz des zu 16schen-
den Elements gesetzt werden. Das zu 16schende Element ist damit nicht mehr Teil der Kette - es ist
aus der Liste entfernt.

Nun miissen wir noch priifen, ob das zu 16schende Element das letzte Element der Liste ist. Dies ist
der Fall, wenn c.next den Wert None hat und wir aktualisieren entsprechend die Referenz der Liste fiir
das letzte Element.

Am Ende dekrementieren wir schlieBlich size.



	Semantik mit Zustand (Präsenzaufgabe)
	Handzähler (Präsenzaufgabe)
	Semantik mit Zustand (Einreichaufgabe, 6 Punkte)
	Veränderbare Listen (Einreichaufgabe, 10 Punkte)

