
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 10: Konzepte der Programmierung (WS 2025/26)

Zustand Bisher haben wir nur mit Bezeichnern gearbeitet, die an unveränderliche Werte gebunden sind:
let x = 1N // Definiert einen Bezeichner x, der an den Wert 1N gebunden ist.
let f () = print x // f schreibt den Wert x auf die Konsole.
f() // Schreibt 1N auf die Konsole.
let x = 2N // Definiert einen neuen Bezeichner mit dem gleichen Namen.
f() // Schreibt 1N auf die Konsole, da f den alten Bezeichner benutzt.

Nun haben wir in der Vorlesung Speicherzellen kennengelernt. Wir verändern das Programm etwas, sodass
die zweite Ausführung von f den neuen Wert auf die Konsole schreibt:
let x = ref 1N // Allokiert eine Speicherzelle , die den Wert 1N enthält, und definiert
// einen Bezeichner x, der an die Adresse dieser Speicherzelle gebunden ist.

let f () = print (!x) // f schreibt den Inhalt der Speicherzelle an x auf die Konsole.
f() // Schreibt 1N auf die Konsole.
x := 2N // Speichert einen neuen Wert in die Speicherzelle an Adresse x.
f() // Schreibt 2N auf die Konsole.

Eine zweite Variante sind veränderliche Bezeichner. Wir können das Programm auch so schreiben:
let mutable x = 1N
let f () = print x
f() // Schreibt 1N auf die Konsole.
x <- 2N
f() // Schreibt 2N auf die Konsole.



Aufgabe 1 Semantik mit Zustand (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let x = ref 1N
let y = ref 2N
let i = ref y

werten zu der folgenden Umgebung aus:

δ = {x 7→ a0, y 7→ a1, i 7→ a2}

Hierbei bezeichnen a0, a1 und a2 Adressen. Der dazugehörige Speicher ist:

σ = {a0 7→ 1N, a1 7→ 2N, a2 7→ a1}

Der folgende Ausdruck soll in der Umgebung δ und dem Speicher σ ausgewertet werden. Geben Sie für den
Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

x := !y + 3N // σ1

y := !(!i) + !x // σ2

i := x // σ3

!i := !y + 1N // σ4

Bezeichner x y i

Adresse a0 a1 a2

σ 1N 2N a1

σ1 5N 2N a1

σ2 5N 7N a1

σ3 5N 7N a0

σ4 8N 7N a0

2



Aufgabe 2 Handzähler (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den Grundlagen von Speicherzellen vertraut machen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Counters.fs aus der Vorlage Aufgabe-10-2.zip.

Zur Einlasskontrolle in einem Supermarkt muss gezählt werden, wie viele Kund*innen sich darin befinden.
Der Supermarktbetreiber beauftragt Lisa Lista und Harry Hacker damit, Handzähler zu entwickeln. Diese
kleinen praktischen Geräte haben zwei Taster und eine Anzeige für den aktuellen Zählerstand. Der Reset-
Taster setzt den Zähler auf Null zurück. Der Inkrement-Taster erhöht den Zählerstand um eins.

a) Harrys Vorschlag ist nun, den Zählerstand in einer mutableVariable zu speichern und mit drei Funktionen
darauf zuzugreifen:
reset: Unit -> Unit // stellt den Zähler auf Null
increment: Unit -> Unit // erhöht den Zähler um eins
get: Unit -> Nat // gibt den aktuellen Zählerstand zurück

Implementieren Sie diese drei Funktionen und verwenden Sie dazu let mutable.

let mutable counter = 0N

let reset(): Unit =
counter <- 0N

let increment(): Unit =
counter <- counter + 1N

let get(): Nat =
counter

b) Lisa merkt an, dass man so aber immer nur einen Zähler gleichzeitig benutzen kann. Der Supermarkt
hat jedoch zwei Türen und es wäre praktisch, wenn man an jeder der beiden Türen einen eigenen Zähler
verwenden kann. Sie schlägt daher folgende Modellierung vor:
type Counter = Ref<Nat>
create: Unit -> Counter // gibt einen neuen Zähler zurück
reset2: Counter -> Unit // stellt den gegebenen Zähler auf Null
increment2: Counter -> Unit // erhöht den gegebenen Zähler um eins
get2: Counter -> Nat // gibt den aktuellen Stand des gegebenen Zählers zurück

Implementieren Sie diese Funktionen.

type Counter = Ref<Nat>

let create(): Counter =
ref 0N

let reset2(c: Counter): Unit =
c := 0N

let increment2(c: Counter): Unit =
c := !c + 1N

let get2(c: Counter): Nat =
!c

3



Aufgabe 3 Semantik mit Zustand (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let i = ref 2N
let j = ref 4N
let x = ref true
let a = ref i
let b = ref j

werten zu der folgenden Umgebung aus:

δ = {i 7→ a0, j 7→ a1, x 7→ a2, a 7→ a3, b 7→ a4}

Hierbei bezeichnen a0, a1, a2, a3 und a4 Adressen. Der dazugehörige Speicher ist:

σ = {a0 7→ 2N, a1 7→ 4N, a2 7→ true, a3 7→ a0, a4 7→ a1}

Die folgenden Ausdrücke sollen nun jeweils in der Umgebung δ und dem Speicher σ ausgewertet werden.
Geben Sie für jeden Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

Beachten Sie: In jeder Teilaufgabe ist der Speicher vor der Auswertung jeweils σ, die Effekte sind also über
die Teilaufgaben hinweg nicht kumulativ, innerhalb einer Teilaufgabe jedoch schon.

a) x := if !x then !(!a) < !i else !i = !j // σ1

i := !(!a) + (if !x then 1N else 2N) // σ2

Bezeichner i j x a b

Adresse a0 a1 a2 a3 a4

σ 2N 4N true a0 a1

σ1 2N 4N false a0 a1

σ2 4N 4N false a0 a1

4



b) i := 0N ; j := 10N // σ1

while !i < 3N do
(if !(x := not !x; x) then j := !(!b) + !i) ; !a := !i + 1N ; // σ2, σ3, σ4

Bezeichner i j x a b

Adresse a0 a1 a2 a3 a4

σ 2N 4N true a0 a1

σ1 0N 10N true a0 a1

σ2 1N 10N false a0 a1

σ3 2N 11N true a0 a1

σ4 3N 11N false a0 a1

5



Aufgabe 4 Veränderbare Listen (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Speicherzellen anhand eines komplexeren Pro-
blems einüben. Sie können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Lists.fs aus der Vorlage Aufgabe-10-4.zip.

Wir verwenden einen von der Vorlesung abweichenden Typ für veränderbare Listen.

type Item<'a> =
{ mutable elem: 'a
mutable next: Option<Item<'a>> }

type MList<'a> =
{ mutable first: Option<Item<'a>>
mutable last: Option<Item<'a>>
mutable size: Nat }

Zunächst definieren wir einen Typ Item<'a>, welcher die Listenelemente repräsentieren soll. Jedes Listen-
element besteht aus einem Wert und ggf. einer Referenz auf ein weiteres Listenelement. Das letzte Element
einer Liste hat kein Folgeelement, daher hat für dieses Element next den Wert None. Die Liste insgesamt wird
durch den Typ MList<'a> repräsentiert. Dieser Typ ist gegenüber herkömmlichen Listen etwas erweitert. Zum
Einen speichern wir Referenzen sowohl zum ersten als auch zum letzten Element der Liste. Dadurch können
wir neue Elemente sehr effizient an den Anfang und ans Ende der Liste anhängen (zur Erinnerung: bei her-
kömmlichen Listen müssen wir ganz durch die Liste durchgehen, um ein Element ans Ende anzuhängen).
Zum Anderen merken wir uns mit size immer die aktuelle Länge der Liste.

Hinweis: Es ist nicht Sinn dieser Aufgabe, entsprechende Funktionen für herkömmliche Listen zu schreiben
und zwischen veränderbaren Listen und herkömmlichen Listen hin- und herzukonvertieren. Solche Abgaben
werden mit 0 Punkten bewertet.

a) Schreiben Sie eine Funktion isEmpty<'a>: MList<'a> -> Bool, die eine veränderbare Liste nimmt und
zurückgibt, ob diese leer ist. Verwenden Sie das Feld size, um zu ermitteln, ob die Liste leer ist.

let isEmpty<'a> (l: MList<'a>): Bool =
l.size = 0N

b) Schreiben Sie eine Funktion appendFront<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine
veränderbare Liste nimmt und diesen Wert vorne an die Liste anhängt.

Hinweis: Bei einer einelementigen Liste müssen first und last Referenzen auf dasselbe Objekt sein.

let appendFront <'a> (v: 'a) (l: MList<'a>): Unit =
let elem = Some { elem = v; next = l.first }
l.first <- elem
if l.size = 0N then l.last <- elem
l.size <- l.size + 1N

Zunächst konstruieren wir das neue Listenelement elem vom Typ Item<'a> mit dem Wert v und der
Referenz auf das bisher erste Element der Liste. Danach setzen wir die Referenz für das erste Listen-
element auf das neu konstruierte Element. Wenn wir in eine leere Liste einfügen (das ist der Fall, wenn
size=0N, wir könnten alternativ z.B. auch prüfen, ob l.last den Wert None hat), müssen wir auch die
Referenz für das letzte Element der Liste auf das neue Element setzen. Zu guter Letzt inkrementieren
wir size.

6



c) Schreiben Sie eine Funktion appendBack<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine ver-
änderbare Liste nimmt und diesen Wert ans Ende der Liste anhängt.

Hinweis: Bei einer einelementigen Liste müssen first und last Referenzen auf dasselbe Objekt sein.

let appendBack <'a> (v: 'a) (l: MList<'a>): Unit =
let elem = Some { elem = v; next = None }
match l.last with
| None -> l.first <- elem
| Some lastElem -> lastElem.next <- elem
l.last <- elem
l.size <- l.size + 1N

Wir beginnen wieder damit das neue Listenelement zu konstruieren. Da dieses ans Ende der Liste
angehängt werden soll, gibt es keine Referenz auf ein Folgeelement, also ist next = None.

Dann unterscheiden wir zwei Fälle: Gibt es in der Liste noch kein letztes Element, weil die Liste leer
ist, so müssen wir zunächst die Referenz für das erste Element der Liste auf das neue Element setzen.
Wenn die Liste nicht leer ist, besitzt sie ein letztes Element, dessen next Referenz wir auf das neue
Element setzen.

Danach aktualisieren wir die Referenz für das letzte Element und inkrementieren size.

d) Schreiben Sie eine Funktion get<'a>: Nat -> MList<'a> -> Option<'a>, die einen Index sowie eine ver-
änderbare Liste nimmt und den Wert des Listenelements an der Position des Index zurückgibt. Beachten
Sie, dass das erste Element der Liste den Index 0 hat. Liegt der Index außerhalb der Liste, soll None
zurückgegeben werden. Die Liste soll durch die get Funktion nicht verändert werden.

Hinweis: Um an eine bestimmte Position in der Liste zu navigieren, können Sie sich zum Beispiel eine
rekursive Hilfsfunktion definieren, die in einem ihrer Argumente eine natürliche Zahl erwartet, die bei
jedem Durchlauf um eins heruntergezählt wird. Wenn Sie also index als Argument übergeben und in
jedem Schritt ein Element in der Liste weitergehen, sind Sie an der Position index, sobald das Argument
0 ist.

let get<'a> (index: Nat) (l: MList<'a>): Option<'a> =
let rec h (i: Nat) (item: Option<Item<'a>>) =

match item with
| None -> None
| Some e ->

if i = 0N then Some e.elem
else h (i-1N) e.next

h index l.first

Dem Hinweis folgend definieren wir eine rekursive Hilfsfunktion, die wir mit dem gesuchten Index
und dem ersten Listenelement aufrufen. Die Idee ist, dass wir in der Hilfsfunktion so lange mit der
next Referenz zum jeweils nächsten Element springen und bei jedem Schritt den Zähler i dekremen-
tieren, bis wir insgesamt index Elemente durchlaufen haben. Der Zähler steht dann auf 0 und item ist
das gesuchte Element.

Wir prüfen hier jedoch zuerst, ob es überhaupt ein aktuelles Element gibt. Damit fangen wir den Fall
ab, dass der Index außerhalb der Liste liegt. Gibt es das Element, prüfen wir, ob wir an der gesuch-
ten Position sind und falls ja, können wir den dort hinterlegten Wert mit Some e.elem zurückgeben.
Wenn die Position noch nicht erreicht ist, rufen wir die Funktion rekursiv auf, um zum nächsten
Listenelement zu springen. Dazu übergeben wir einen dekrementierten Zähler sowie das nächste Lis-
tenelement.

7



e) Schreiben Sie eine Funktion update<'a>: Nat -> 'a -> MList<'a> -> Unit, die einen Index sowie einen
Wert und eine veränderbare Liste nimmt und in der Liste das Element an der Position des Index durch
den übergebenen Wert ersetzt. Liegt der übergebene Index außerhalb der Liste, so soll die Funktion
update die Liste nicht verändern.

Tipp: Verwenden Sie eine rekursive Hilfsfunktion ähnlich wie bei Aufgabenteil d).

let update<'a> (index: Nat) (v: 'a) (l: MList<'a>): Unit =
let rec h (i: Nat) (item: Option<Item<'a>>) =

match item with
| None -> ()
| Some e ->

if i = 0N then e.elem <- v
else h (i-1N) e.next

h index l.first

Bis auf zwei kleine Änderungen gehen wir genauso vor wie im letzten Aufgabenteil. Für den Fall,
dass es kein Listenelement mehr gibt, obwohl der Zähler noch nicht 0 ist (Index außerhalb der Liste),
geben wir direkt das leere Tupel () zurück. Wenn i = 0N ist, sind wir an der gesuchten Position und
können den Wert des Elements mit e.elem <- v aktualisieren.

f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion remove<'a>: Nat -> MList<'a> -> Unit, die einen
Index und eine veränderbare Liste nimmt und das Element an der Position des Index aus der Liste ent-
fernt.

let remove<'a> (index: Nat) (l: MList<'a>): Unit =
let rec h (i: Nat) (prev: Option<Item<'a>>) (curr: Option<Item<'a>>) =

match curr with
| None -> ()
| Some c ->

if i = 0N then
match prev with
| None -> l.first <- c.next
| Some p -> p.next <- c.next
match c.next with
| None -> l.last <- prev
| _ -> ()
l.size <- l.size - 1N

else
h (i-1N) curr c.next

h index None l.first

Wir erweitern unsere Idee mit der rekursiven Hilfsfunktion dahingehend, dass wir nun sowohl das
aktuelle Element curr als auch das vorherige Element prev übergeben.

Beim Aufruf der rekursiven Hilfsfunktion übergeben wir als aktuelles Element das erste Listenele-
ment. Da kein vorheriges Element existiert, übergeben wir für prev den Wert None

Wir behandeln zuerst wieder den Fall, dass es kein aktuelles Listenelement gibt (index liegt außerhalb
der Liste). Anschließend prüfen wir, ob wir an der gesuchten Position stehen (i = 0N).

Falls nicht, rufen wir die Hilfsfunktion rekursiv auf, dabei wird der Zähler i dekrementiert. Als „neu-
es vorheriges“ Element übergeben wir curr und als „neues aktuelles“ Element den Nachfolger c.next
(der, falls index außerhalb der Liste liegt, irgendwann None ist und damit im rekursiven Aufruf abge-
fangen wird).

Falls wir uns jedoch an der gesuchten Position in der Liste befinden, können wir das Element ent-
fernen. Dabei müssen wir einige Spezialfälle beachten. Zunächst prüfen wir, ob es ein vorheriges
Element prev gibt. Wenn es kein vorheriges Element gibt, heißt das, dass wir das Element am Anfang
der Liste löschen möchten. Dann müssen wir die Referenz der Liste für das erste Element ändern. Wir

8



aktualisieren es mit l.first <- c.next auf das vormals zweite Element in der Liste.

Existiert ein vorheriges Element, so muss dessen next Referenz auf die next Referenz des zu löschen-
den Elements gesetzt werden. Das zu löschende Element ist damit nicht mehr Teil der Kette - es ist
aus der Liste entfernt.

Nun müssen wir noch prüfen, ob das zu löschende Element das letzte Element der Liste ist. Dies ist
der Fall, wenn c.next den Wert None hat und wir aktualisieren entsprechend die Referenz der Liste für
das letzte Element.

Am Ende dekrementieren wir schließlich size.

9


	Semantik mit Zustand (Präsenzaufgabe)
	Handzähler (Präsenzaufgabe)
	Semantik mit Zustand (Einreichaufgabe, 6 Punkte)
	Veränderbare Listen (Einreichaufgabe, 10 Punkte)

