Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Fachbereich Informatik

Ubungsblatt 10: Konzepte der Programmierung (WS 2025/26)

Ausgabe: 13. Januar 2026
Abgabe: 19./20./21. Januar 2026, sieche Homepage

Zustand Bisher haben wir nur mit Bezeichnern gearbeitet, die an unveridnderliche Werte gebunden sind:

let x = 1IN // Definiert einen Bezeichner x, der an den Wert 1N gebunden ist.
let £ () = print x // f schreibt den Wert x auf die Konsole.

£f() // Schreibt 1IN auf die Konsole.

let x = 2N // Definiert einen neuen Bezeichner mit dem gleichen Namen.

f() // Schreibt 1IN auf die Konsole, da f den alten Bezeichner benutzt.

Nun haben wir in der Vorlesung Speicherzellen kennengelernt. Wir verdndern das Programm etwas, sodass
die zweite Ausfithrung von f den neuen Wert auf die Konsole schreibt:

let x = ref IN // Allokiert eine Speicherzelle, die den Wert 1N enthdlt, und definiert
// einen Bezeichner x, der an die Adresse dieser Speicherzelle gebunden ist.

let £ () = print (!x) // f schreibt den Inhalt der Speicherzelle an x auf die Konsole.

f() // Schreibt 1IN auf die Konsole.

x := 2N // Speichert einen neuen Wert in die Speicherzelle an Adresse x.

f() // Schreibt 2N auf die Konsole.

Eine zweite Variante sind veridnderliche Bezeichner. Wir konnen das Programm auch so schreiben:

let mutable x = 1IN

let £ () = print x

f() // Schreibt 1IN auf die Konsole.
X <- 2N

f() // Schreibt 2N auf die Konsole.


https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/uebung/

Aufgabe 1 Semantik mit Zustand (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let x = ref 1IN
let y = ref 2N
let i = ref y

werten zu der folgenden Umgebung aus:
o0={x—ay, y ay, i — a}

Hierbei bezeichnen ag, a; und a; Adressen. Der dazugehorige Speicher ist:
o ={ag+— 1IN, a; — 2N, ay — a;}

Der folgende Ausdruck soll in der Umgebung 6 und dem Speicher o ausgewertet werden. Geben Sie fiir den
Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

x := ly + 3N // o1
y = (i) + 'x /) o
i = x // o3
i := 'y + 1IN // o4
Bezeichner X y i
Adresse ap a; ar
loa 1IN 2N a
(O8]
(o)
g3
04




Aufgabe 2 Handzahler (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den Grundlagen von Speicherzellen vertraut machen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Counters. fs aus der Vorlage Aufgabe-10-2.zip.

Zur Finlasskontrolle in einem Supermarkt muss gezihlt werden, wie viele Kund*innen sich darin befinden.
Der Supermarktbetreiber beauftragt Lisa Lista und Harry Hacker damit, Handzédhler zu entwickeln. Diese
kleinen praktischen Gerite haben zwei Taster und eine Anzeige fiir den aktuellen Zihlerstand. Der Reset-
Taster setzt den Zihler auf Null zuriick. Der Inkrement-Taster erhoht den Zihlerstand um eins.

a) Harrys Vorschlag ist nun, den Zahlerstand in einer mutable Variable zu speichern und mit drei Funktionen
darauf zuzugreifen:

reset: Unit -> Unit // stellt den Zdhler auf Null
increment: Unit -> Unit // erhoht den Zdhler um eins
get: Unit -> Nat // gibt den aktuellen Z&hlerstand zurick

Implementieren Sie diese drei Funktionen und verwenden Sie dazu let mutable.

b) Lisa merkt an, dass man so aber immer nur einen Zihler gleichzeitig benutzen kann. Der Supermarkt
hat jedoch zwei Tiiren und es wire praktisch, wenn man an jeder der beiden Tiiren einen eigenen Zihler
verwenden kann. Sie schlédgt daher folgende Modellierung vor:

type Counter = Ref<Nat>

create: Unit -> Counter // gibt einen neuen Z&hler zurick

reset2: Counter -> Unit // stellt den gegebenen Zdhler auf Null

increment2: Counter -> Unit // erhoht den gegebenen Zdhler um eins

get2: Counter -> Nat // gibt den aktuellen Stand des gegebenen Zdhlers zurick

Implementieren Sie diese Funktionen.



Aufgabe 3 Semantik mit Zustand (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let i = ref 2N
let j = ref 4N
let x = ref true
let a = ref i
let b = ref j

werten zu der folgenden Umgebung aus:
o={i—ag, ja, x> ay, a as, b ay}

Hierbei bezeichnen ay, a1, as, az und a4 Adressen. Der dazugehorige Speicher ist:
o ={ayg— 2N, a; — 4N, ay - true, az — ay, as — ai}

Die folgenden Ausdriicke sollen nun jeweils in der Umgebung ¢ und dem Speicher o ausgewertet werden.
Geben Sie fiir jeden Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

Beachten Sie: In jeder Teilaufgabe ist der Speicher vor der Auswertung jeweils o, die Effekte sind also iiber
die Teilaufgaben hinweg nicht kumulativ, innerhalb einer Teilaufgabe jedoch schon.

a) x := if !x then !(la) < !i else !i = !j // oy
i := !'(ta) + (if !'x then 1IN else 2N) // o
Bezeichner i j X a b

Adresse ao aq an as ay
o 2N 4N true agp ap
g1

o2




b) i := ON ; j 10N
while !i < 3N do
(if '(x 1x; = 1i) 'i + 1IN // o2,
Bezeichner i j X a b
Adresse aop a; a» as ay
o 2N AN true aop ap
(on]
(o)
g3
04




Aufgabe 4 Veranderbare Listen (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Speicherzellen anhand eines komplexeren Pro-
blems einiiben. Sie konnen sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Losungen in die Datei Lists. fs aus der Vorlage Aufgabe-10-4.zip.

Wir verwenden einen von der Vorlesung abweichenden Typ fiir verdnderbare Listen.

type Item<'a> =
{ mutable elem: 'a
mutable next: Option<Item<'a>> }

type MList<'a> =
{ mutable first: Option<Item<'a>>
mutable last: Option<Item<'a>>
mutable size: Nat }

Zunichst definieren wir einen Typ Item<'a>, welcher die Listenelemente reprisentieren soll. Jedes Listen-
element besteht aus einem Wert und ggf. einer Referenz auf ein weiteres Listenelement. Das letzte Element
einer Liste hat kein Folgeelement, daher hat fiir dieses Element next den Wert None. Die Liste insgesamt wird
durch den Typ MList<'a> représentiert. Dieser Typ ist gegeniiber herkdmmlichen Listen etwas erweitert. Zum
Einen speichern wir Referenzen sowohl zum ersten als auch zum letzten Element der Liste. Dadurch kénnen
wir neue Elemente sehr effizient an den Anfang und ans Ende der Liste anhéingen (zur Erinnerung: bei her-
kommlichen Listen miissen wir ganz durch die Liste durchgehen, um ein Element ans Ende anzuhingen).
Zum Anderen merken wir uns mit size immer die aktuelle Lange der Liste.

Hinweis: Es ist nicht Sinn dieser Aufgabe, entsprechende Funktionen fiir herkommliche Listen zu schreiben
und zwischen verdnderbaren Listen und herkommlichen Listen hin- und herzukonvertieren. Solche Abgaben
werden mit O Punkten bewertet.

a) Schreiben Sie eine Funktion isEmpty<'a>: MList<'a> -> Bool, die eine verdnderbare Liste nimmt und
zuriickgibt, ob diese leer ist. Verwenden Sie das Feld size, um zu ermitteln, ob die Liste leer ist.

b) Schreiben Sie eine Funktion appendFront<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine
verdanderbare Liste nimmt und diesen Wert vorne an die Liste anhédngt.

Hinweis: Bei einer einelementigen Liste miissen first und last Referenzen auf dasselbe Objekt sein.

¢) Schreiben Sie eine Funktion appendBack<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine ver-
dnderbare Liste nimmt und diesen Wert ans Ende der Liste anhéngt.

Hinweis: Bei einer einelementigen Liste miissen first und last Referenzen auf dasselbe Objekt sein.

d) Schreiben Sie eine Funktion get<'a>: Nat -> MList<'a> -> Option<'a>, die einen Index sowie eine ver-
dnderbare Liste nimmt und den Wert des Listenelements an der Position des Index zuriickgibt. Beachten
Sie, dass das erste Element der Liste den Index O hat. Liegt der Index auBlerhalb der Liste, soll None
zuriickgegeben werden. Die Liste soll durch die get Funktion nicht verdndert werden.

Hinweis: Um an eine bestimmte Position in der Liste zu navigieren, konnen Sie sich zum Beispiel eine
rekursive Hilfsfunktion definieren, die in einem ihrer Argumente eine natiirliche Zahl erwartet, die bei
jedem Durchlauf um eins heruntergezdhlt wird. Wenn Sie also index als Argument iibergeben und in
Jjedem Schritt ein Element in der Liste weitergehen, sind Sie an der Position index, sobald das Argument
0 ist.

e) Schreiben Sie eine Funktion update<'a>: Nat -> 'a -> MList<'a> -> Unit, die einen Index sowie einen
Wert und eine verdnderbare Liste nimmt und in der Liste das Element an der Position des Index durch
den iibergebenen Wert ersetzt. Liegt der iibergebene Index auflerhalb der Liste, so soll die Funktion
update die Liste nicht verdndern.

Tipp: Verwenden Sie eine rekursive Hilfsfunktion dhnlich wie bei Aufgabenteil d).

f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion remove<'a>: Nat -> MList<'a> -> Unit, die einen
Index und eine veridnderbare Liste nimmt und das Element an der Position des Index aus der Liste ent-
fernt.



	Semantik mit Zustand (Präsenzaufgabe)
	Handzähler (Präsenzaufgabe)
	Semantik mit Zustand (Einreichaufgabe, 6 Punkte)
	Veränderbare Listen (Einreichaufgabe, 10 Punkte)

