
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Übungsblatt 10: Konzepte der Programmierung (WS 2025/26)

Ausgabe: 13. Januar 2026
Abgabe: 19./20./21. Januar 2026, siehe Homepage

Zustand Bisher haben wir nur mit Bezeichnern gearbeitet, die an unveränderliche Werte gebunden sind:
let x = 1N // Definiert einen Bezeichner x, der an den Wert 1N gebunden ist.
let f () = print x // f schreibt den Wert x auf die Konsole.
f() // Schreibt 1N auf die Konsole.
let x = 2N // Definiert einen neuen Bezeichner mit dem gleichen Namen.
f() // Schreibt 1N auf die Konsole, da f den alten Bezeichner benutzt.

Nun haben wir in der Vorlesung Speicherzellen kennengelernt. Wir verändern das Programm etwas, sodass
die zweite Ausführung von f den neuen Wert auf die Konsole schreibt:
let x = ref 1N // Allokiert eine Speicherzelle , die den Wert 1N enthält, und definiert
// einen Bezeichner x, der an die Adresse dieser Speicherzelle gebunden ist.

let f () = print (!x) // f schreibt den Inhalt der Speicherzelle an x auf die Konsole.
f() // Schreibt 1N auf die Konsole.
x := 2N // Speichert einen neuen Wert in die Speicherzelle an Adresse x.
f() // Schreibt 2N auf die Konsole.

Eine zweite Variante sind veränderliche Bezeichner. Wir können das Programm auch so schreiben:
let mutable x = 1N
let f () = print x
f() // Schreibt 1N auf die Konsole.
x <- 2N
f() // Schreibt 2N auf die Konsole.

https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/uebung/


Aufgabe 1 Semantik mit Zustand (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let x = ref 1N
let y = ref 2N
let i = ref y

werten zu der folgenden Umgebung aus:

δ = {x 7→ a0, y 7→ a1, i 7→ a2}

Hierbei bezeichnen a0, a1 und a2 Adressen. Der dazugehörige Speicher ist:

σ = {a0 7→ 1N, a1 7→ 2N, a2 7→ a1}

Der folgende Ausdruck soll in der Umgebung δ und dem Speicher σ ausgewertet werden. Geben Sie für den
Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

x := !y + 3N // σ1

y := !(!i) + !x // σ2

i := x // σ3

!i := !y + 1N // σ4

Bezeichner x y i

Adresse a0 a1 a2

σ 1N 2N a1

σ1

σ2

σ3

σ4



Aufgabe 2 Handzähler (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit den Grundlagen von Speicherzellen vertraut machen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Counters.fs aus der Vorlage Aufgabe-10-2.zip.

Zur Einlasskontrolle in einem Supermarkt muss gezählt werden, wie viele Kund*innen sich darin befinden.
Der Supermarktbetreiber beauftragt Lisa Lista und Harry Hacker damit, Handzähler zu entwickeln. Diese
kleinen praktischen Geräte haben zwei Taster und eine Anzeige für den aktuellen Zählerstand. Der Reset-
Taster setzt den Zähler auf Null zurück. Der Inkrement-Taster erhöht den Zählerstand um eins.

a) Harrys Vorschlag ist nun, den Zählerstand in einer mutableVariable zu speichern und mit drei Funktionen
darauf zuzugreifen:
reset: Unit -> Unit // stellt den Zähler auf Null
increment: Unit -> Unit // erhöht den Zähler um eins
get: Unit -> Nat // gibt den aktuellen Zählerstand zurück

Implementieren Sie diese drei Funktionen und verwenden Sie dazu let mutable.

b) Lisa merkt an, dass man so aber immer nur einen Zähler gleichzeitig benutzen kann. Der Supermarkt
hat jedoch zwei Türen und es wäre praktisch, wenn man an jeder der beiden Türen einen eigenen Zähler
verwenden kann. Sie schlägt daher folgende Modellierung vor:
type Counter = Ref<Nat>
create: Unit -> Counter // gibt einen neuen Zähler zurück
reset2: Counter -> Unit // stellt den gegebenen Zähler auf Null
increment2: Counter -> Unit // erhöht den gegebenen Zähler um eins
get2: Counter -> Nat // gibt den aktuellen Stand des gegebenen Zählers zurück

Implementieren Sie diese Funktionen.



Aufgabe 3 Semantik mit Zustand (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie die dynamische Semantik mit einem Speicher nachvollziehen. Sie
können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Die Deklarationen

let i = ref 2N
let j = ref 4N
let x = ref true
let a = ref i
let b = ref j

werten zu der folgenden Umgebung aus:

δ = {i 7→ a0, j 7→ a1, x 7→ a2, a 7→ a3, b 7→ a4}

Hierbei bezeichnen a0, a1, a2, a3 und a4 Adressen. Der dazugehörige Speicher ist:

σ = {a0 7→ 2N, a1 7→ 4N, a2 7→ true, a3 7→ a0, a4 7→ a1}

Die folgenden Ausdrücke sollen nun jeweils in der Umgebung δ und dem Speicher σ ausgewertet werden.
Geben Sie für jeden Ausdruck den Speicherzustand nach jeder Einzelanweisung an.

Beachten Sie: In jeder Teilaufgabe ist der Speicher vor der Auswertung jeweils σ, die Effekte sind also über
die Teilaufgaben hinweg nicht kumulativ, innerhalb einer Teilaufgabe jedoch schon.

a) x := if !x then !(!a) < !i else !i = !j // σ1

i := !(!a) + (if !x then 1N else 2N) // σ2

Bezeichner i j x a b

Adresse a0 a1 a2 a3 a4

σ 2N 4N true a0 a1

σ1

σ2



b) i := 0N ; j := 10N // σ1

while !i < 3N do
(if !(x := not !x; x) then j := !(!b) + !i) ; !a := !i + 1N ; // σ2, σ3, σ4

Bezeichner i j x a b

Adresse a0 a1 a2 a3 a4

σ 2N 4N true a0 a1

σ1

σ2

σ3

σ4



Aufgabe 4 Veränderbare Listen (Einreichaufgabe, 10 Punkte)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Speicherzellen anhand eines komplexeren Pro-
blems einüben. Sie können sich an den Vorlesungsfolien 753 bis 825 sowie am Skript Kapitel 7.2 orientieren.

Schreiben Sie Ihre Lösungen in die Datei Lists.fs aus der Vorlage Aufgabe-10-4.zip.

Wir verwenden einen von der Vorlesung abweichenden Typ für veränderbare Listen.

type Item<'a> =
{ mutable elem: 'a
mutable next: Option<Item<'a>> }

type MList<'a> =
{ mutable first: Option<Item<'a>>
mutable last: Option<Item<'a>>
mutable size: Nat }

Zunächst definieren wir einen Typ Item<'a>, welcher die Listenelemente repräsentieren soll. Jedes Listen-
element besteht aus einem Wert und ggf. einer Referenz auf ein weiteres Listenelement. Das letzte Element
einer Liste hat kein Folgeelement, daher hat für dieses Element next den Wert None. Die Liste insgesamt wird
durch den Typ MList<'a> repräsentiert. Dieser Typ ist gegenüber herkömmlichen Listen etwas erweitert. Zum
Einen speichern wir Referenzen sowohl zum ersten als auch zum letzten Element der Liste. Dadurch können
wir neue Elemente sehr effizient an den Anfang und ans Ende der Liste anhängen (zur Erinnerung: bei her-
kömmlichen Listen müssen wir ganz durch die Liste durchgehen, um ein Element ans Ende anzuhängen).
Zum Anderen merken wir uns mit size immer die aktuelle Länge der Liste.

Hinweis: Es ist nicht Sinn dieser Aufgabe, entsprechende Funktionen für herkömmliche Listen zu schreiben
und zwischen veränderbaren Listen und herkömmlichen Listen hin- und herzukonvertieren. Solche Abgaben
werden mit 0 Punkten bewertet.

a) Schreiben Sie eine Funktion isEmpty<'a>: MList<'a> -> Bool, die eine veränderbare Liste nimmt und
zurückgibt, ob diese leer ist. Verwenden Sie das Feld size, um zu ermitteln, ob die Liste leer ist.

b) Schreiben Sie eine Funktion appendFront<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine
veränderbare Liste nimmt und diesen Wert vorne an die Liste anhängt.

Hinweis: Bei einer einelementigen Liste müssen first und last Referenzen auf dasselbe Objekt sein.

c) Schreiben Sie eine Funktion appendBack<'a>: 'a -> MList<'a> -> Unit, die einen Wert v sowie eine ver-
änderbare Liste nimmt und diesen Wert ans Ende der Liste anhängt.

Hinweis: Bei einer einelementigen Liste müssen first und last Referenzen auf dasselbe Objekt sein.

d) Schreiben Sie eine Funktion get<'a>: Nat -> MList<'a> -> Option<'a>, die einen Index sowie eine ver-
änderbare Liste nimmt und den Wert des Listenelements an der Position des Index zurückgibt. Beachten
Sie, dass das erste Element der Liste den Index 0 hat. Liegt der Index außerhalb der Liste, soll None
zurückgegeben werden. Die Liste soll durch die get Funktion nicht verändert werden.

Hinweis: Um an eine bestimmte Position in der Liste zu navigieren, können Sie sich zum Beispiel eine
rekursive Hilfsfunktion definieren, die in einem ihrer Argumente eine natürliche Zahl erwartet, die bei
jedem Durchlauf um eins heruntergezählt wird. Wenn Sie also index als Argument übergeben und in
jedem Schritt ein Element in der Liste weitergehen, sind Sie an der Position index, sobald das Argument
0 ist.

e) Schreiben Sie eine Funktion update<'a>: Nat -> 'a -> MList<'a> -> Unit, die einen Index sowie einen
Wert und eine veränderbare Liste nimmt und in der Liste das Element an der Position des Index durch
den übergebenen Wert ersetzt. Liegt der übergebene Index außerhalb der Liste, so soll die Funktion
update die Liste nicht verändern.

Tipp: Verwenden Sie eine rekursive Hilfsfunktion ähnlich wie bei Aufgabenteil d).

f) Freiwillige Zusatzaufgabe: Schreiben Sie eine Funktion remove<'a>: Nat -> MList<'a> -> Unit, die einen
Index und eine veränderbare Liste nimmt und das Element an der Position des Index aus der Liste ent-
fernt.


	Semantik mit Zustand (Präsenzaufgabe)
	Handzähler (Präsenzaufgabe)
	Semantik mit Zustand (Einreichaufgabe, 6 Punkte)
	Veränderbare Listen (Einreichaufgabe, 10 Punkte)

