Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.
Felix Winkler, M.Sc. AG Programmiersprachen

Fachbereich Informatik

Losungshinweise/-vorschlage zum
Ubungsblatt 11: Konzepte der Programmierung (WS 2025/26)

Aufgabe 1 Kontrolistrukturen und Ausnahmen (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie dasselbe algorithmische Problem aus verschiedenen Blickrich-
tungen betrachten, um sich mit den Unterschieden der funktionalen und der imperativen Programmierung
vertraut zu machen. Sie konnen sich an den Vorlesungsfolien 836 bis 899 sowie an den Kapiteln 7.3 und 7.4
im Skript orientieren.

Schreiben Sie Ihre Losungen in die Datei Find. fs aus der Vorlage Aufgabe-11-1.zip.

In den folgenden Teilaufgaben sollen Sie Funktionen schreiben, die das letzte Element einer Liste zuriick-
geben, fiir welches ein vorgegebenes Pridikat zu true auswertet. In zwei der Teilaufgaben verwenden wir
dabei die folgende Ausnahme:

exception NotFound

Hinweis: Da anhand derselben Problemstellung verschiedene Konzepte eingeiibt werden sollen, ist es nahe-
liegend, dass es nicht erlaubt ist, die Funktionen der einzelnen Teilaufgaben gegenseitig aufzurufen. Ver-
wenden Sie in Threr Losung auf3erdem keine Bibliotheksfunktionen. Davon ausgenommen sind das Length
Attribut von Listen, bzw. List.length, sofern Sie diese verwenden mdochten.

a) Schreiben Sie eine Funktion tryFindLast<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein Pri-
dikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zuriickgibt, fiir das pred zu true
auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zuriickgegeben werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen (Schleifen) oder
Ausnahmen.

let rec tryFindLast<'a> (pred: 'a -> Bool) (xs: List<'a>): Option<'a> =
match xs with
| [] -> None
| y::ys ->
match tryFindLast pred ys with
| None -> if pred y then Some y else None
| Some z -> Some z

Im Fall, dass die iibergebene Liste leer ist, geben wir None zuriick. Falls nicht, rufen wir die Funktion
rekursiv mit der Restliste auf und matchen auf das Ergebnis. Gibt es in der Restliste kein letztes
Element, welches das Pridikat erfiillt, priifen wir ob das Kopfelement y das Prédikat erfiillt. Falls
ja, konnen wir es mit Some y zuriickgeben (durch den rekursiven Aufruf wissen wir ja, dass es kein
Element weiter hinten in der Liste geben kann, welches das Pradikat erfiillen konnte). Erfiillt auch y
das Prédikat nicht, geben wir None zuriick. Sofern im rekursiven Aufruf in der Restliste ein Element
z gefunden wird, fiir welches das Priadikat zu true auswertet, geben wir dieses zuriick (auch wenn y
das Pridikat erfiillt, liegt z weiter hinten in der Liste als y).

b) Schreiben Sie eine Funktion findLast<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Pridikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zuriickgibt, fiir das pred zu true auswertet.
Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen.

let rec findLast<'a> (pred: 'a -> Bool) (xs: List<'a>): 'a =
match xs with
| [1] -> raise NotFound
| y::ys ->
try findLast pred ys with
| NotFound -> if pred y then y else raise NotFound

Wir gehen genauso vor wie in der ersten Teilaufgabe. Falls die iibergebene Liste leer ist, konnen
wir direkt die NotFound Ausnahme werfen. Den rekursiven Aufruf matchen wir jedoch nicht, sondern
packen ihn in einen try Block ein. Ist der rekursive Aufruf erfolgreich, wird dessen Ergebnis als
Resultat zuriickgegeben. Schligt er fehl, so fangen wir die NotFound Ausnahme und priifen wieder, ob
y das Pradikat erfiillt. Falls ja, geben wir y zuriick. Ansonsten werfen wir die Ausnahme weiter.

¢) Schreiben Sie eine Funktion tryFindLast2<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein
Pridikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zuriickgibt, fiir das pred zu
true auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zuriickgegeben
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen oder Ausnahmen.

let tryFindLast2<'a> (pred: 'a -> Bool) (xs: List<'a>): Option<'a> =
let mutable last: Option<'a> = None
for x in xs do
if pred x then last <- Some x
last

Zunichst definieren wir eine verdnderliche Variable last, die wir verwenden mochten, um das Ergeb-
nis zu speichern. Wir initialisieren sie mit None, da wir zu Beginn noch nicht wissen, ob wir iiberhaupt
ein Element in der Liste finden werden, welches das Pridikat erfiillt. Mit einer for Schleife iterieren
wir liber die Listenelemente und priifen, ob das aktuelle Element x das Préadikat erfiillt. Falls ja, sichern
wir das Element in der Variablen last (ein ggf. vorher darin gespeichertes Element tiberschreiben wir),
ansonsten tun wir nichts. Nachdem wir mit der Schleife die gesamte Liste durchlaufen haben, steht in
der Variablen last das letzte Element der Liste, welches das Pridikat erfiillt (oder None). Als Ergebnis
geben wir entsprechend last zuriick.

d) Schreiben Sie eine Funktion findLast2<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Pridikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zuriickgibt, fiir das pred zu true auswer-
tet. Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen.

let findLast2<'a> (pred: 'a -> Bool) (xs: List<'a>»): 'a =
let mutable last: Option<'a> = None
for x in xs do
if pred x then last <- Some x
match last with
| None -> raise NotFound
| Some x -> X

Wir iibernehmen den Grofteil der Losung aus der vorherigen Teilaufgabe. Anstelle 1ast zuriickzuge-
ben, priifen wir, ob ein Element gefunden wurde. Falls nicht, werfen wir eine NotFound Ausnahme.
Ansonsten geben wir das gefundene Element x zuriick.

Aufgabe 2 Arrays (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Arrays einiiben. Sie konnen sich an den Vorle-
sungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript orientieren.

Schreiben Sie Ihre Losungen in die Datei ArrayMap. fs aus der Vorlage Aufgabe-11-2.zip.

a) Schreiben Sie eine Funktion map<'a, 'b>: ('a -> 'b) -> Array<'a> -> Array<'b>, welche eine Funkti-
on f sowie ein Array ar nimmt und ein neues Array zuriickgibt, welches die Anwendung von f auf jedes
Element von ar enthélt.

let map<'a,'b> (f: 'a -> 'b) (ar: Array<'a>) : Array<'b> =
[| for x in ar -> f x |]

b) Schreiben Sie eine Funktion inplaceMap<'a>: ('a -> 'a) -> Array<'a> -> Unit, welche eine Funktion
f sowie ein Array ar nimmt und das Array ar in-place verédndert, sodass jedes Element von ar durch die
Anwendung von £ auf dieses Element ersetzt wird. Warum kann f nicht den Typ 'a -> 'b haben?

let inplaceMap<'a> (f: 'a -> 'a) (ar: Array<'a>) : Unit =
for i in ® .. ar.Length - 1 do
ar.[i] <- f ar.[i]

f kann nicht den Typ 'a -> 'b haben, da wir in-place arbeiten und das Array ar nicht verdndern
konnen, wenn f Elemente des Arrays auf Elemente eines anderen Typs abbildet. Insbesondere wire
der Typ von ar wihrend der Ausfithrung von inplaceMap nicht konsistent.

Aufgabe 3 Ausnahmen (Einreichaufgabe, 6 Punkte)
Motivation: In dieser Aufgabe sollen Sie Ausnahmen einiiben. Sie kdnnen sich an den Vorlesungsfolien 853
bis 899 sowie am Skript Kapitel 7.4 orientieren.
Unter Beriicksichtigung dieser Typ- und Ausnahmedefinitionen
type A = | A1 | A2 | A3 of String | A4 of Bool
exception E

exception E1 of Nat
exception E2 of A

betrachten wir den folgenden Ausdruck. Dabei ist £ eine Funktion vom Typ Unit -> A.

try
match f() with
| Al -> 22N + raise (E2 A2)
| A2 -> raise E
| A3 x -> raise (E1 4711N)
| A4 x when x -> 97N
| A4 x -> raise (E2 Al)
with
| E -> 4711N

| E1l n -> if n = 4711N then 50N else raise (E1 815N)
| E2 s -> match s with

| A1 -> 1N

| A2 -> 2N

| A3 x -> 3N
|

A4 x -> raise (E2 (A4 (not x)))

Bestimmen Sie fiir die folgenden Implementierungen der Funktion f jeweils, zu welchem Wert obiger Aus-
druck auswertet. Kennzeichnen Sie geworfene Ausnahmen dabei, wie in der Vorlesung eingefiihrt, mit einem
Kistchen, die durch raise (E1 4711N) geworfene Ausnahme also durch [E1 4711N].

a) let £ = Al
| o
b) let £f() = A4 false

| o

¢) let £() = raise (E2 (A4 true))

| E2 (A4 false)

Aufgabe 4 Arrays und Zustand (Einreichaufgabe, 8 Punkte)

Motivation: In dieser Aufgabe sollen Sie Arrays und Kontrollstrukturen (Schleifen) einiiben. Sie kdnnen
sich an den Vorlesungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript
orientieren.

Schreiben Sie Ihre Losungen in die Datei Arrays. fs aus der Vorlage Aufgabe-11-4.zip.

In den folgenden Teilaufgaben betrachten wir Funktionen, die auf Arrays arbeiten. Es steht Thnen, frei die
Funktionen rekursiv oder imperativ zu implementieren.

Hinweis: Beachten Sie, dass Arrays mit nichtnegativen Ganzzahlen vom Typ Int indiziert werden. Der Typ
der natiirlichen Zahlen Nat wird als Index leider nicht unterstiitzt.

Hinweis: Es gibt mehrere Moglichkeiten ein Array mit Hilfe von Schleifen zu durchlaufen. Einerseits kann
mit for oder while und einer Zihlvariable der Zugriff auf die Arrayelemente direkt iiber deren ,, Hausnum-
mer* erfolgen. Andererseits kann fiir ein Array ar mit for x in ar auch direkt iiber die Arrayelemente selbst
iteriert werden. Beispiele dazu finden Sie im Skript auf den Seiten 408 und 409.

Hinweis: Sie konnen Funktionen aus vorherigen Teilaufgaben verwenden, wenn Sie mochten. Verwenden Sie
in Ihrer Losung keine Bibliotheksfunktionen. Davon ausgenommen sind das Length-Attribut von Listen und
Arrays bzw. die Funktionen List.length und Array.length. Konvertieren Sie in Ihrer Losung nicht zwischen
Arrays und Listen hin und her, aufer wenn explizit gefordert.

a) Schreiben Sie eine Funktion swap<'a>: Array<'a> -> Int * Int -> Unit, die ein Array sowie zwei Indi-
zes nimmt und die Elemente an den Positionen der Indizes vertauscht.

let swap<'a> (ar: Array<'a>) (i: Int, j: Int): Unit =
let tmp = ar.[i]
ar.[i] <- ar.[j]
ar.[j] <- tmp

S. Folie 851.

b) Schreiben Sie eine Funktion insertionsort<'a when 'a: comparison>: Array<'a> -> Unit, die ein Array
nimmt und dieses in-place sortiert (also ohne dabei ein neues Array zu konstruieren). Implementieren
Sie den Insertionsort! Algorithmus.

let insertionsort<'a when 'a: comparison> (ar: Array<'a>): Unit =
let n = ar.Length
for i in 1..(n-1) do
let mutable j = i
while j > 0 && ar.[j-1] > ar.[j] do
swap ar (j-1, j)
jo<-3-1

Unsere Insertionsort-Implementierung sortiert das Array von links nach rechts. Die dulere Schleife
gibt vor, bis wohin das Array bereits sortiert ist. Die innere Schleife nimmt das nédchste Element und
schiebt es durch Vertauschungen so weit nach links, bis es an der richtigen Stelle steht.

Insertionsort ist ein relativ intuitives, aber ineffizientes Sortierverfahren (Worstcase-Laufzeit quadra-
tisch in der Léange des Arrays).

Is.z.B. https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

c)

d)

Schreiben Sie eine Funktion rotate<'a>: Array<'a> -> Unit, welche das iibergebene Array in-place ro-
tiert, also das erste Element an die zweite Stelle schiebt, das zweite an die dritte, usw. Das letzte Element
wird an die erste Stelle geschoben.

let rotate<'a> (ar: Array<'a>) : Unit =
let n = ar.Length
if n > 0 then
let nth = ar.[n-1]
for i in [n-1..(-1)..1] do
ar.[i] <- ar.[i-1]
ar.[0] <- nth

//alternativ:
let rotate2<'a> (ar: Array<'a>) : Unit =
let n = ar.Length
for i in [n-1..(-1)..1] do
swap ar (i-1, i)

Wir merken uns das letzte Element und schieben alle anderen Elemente um eine Stelle nach rechts.
Dann schreiben wir das letzte Element an die erste Stelle.

Schreiben Sie eine Funktion same<'a when 'a: equality>: List<'a> -> Array'<a> -> Bool, die eine Lis-
te sowie ein Array nimmt und zuriickgibt, ob die Elemente an korrespondierenden Stellen in der Liste
und im Array gleich sind. Wenn die Liste und das Array unterschiedlich lang sind, ist das Ergebnis der
same Funktion false. Konvertieren Sie dazu das Array mithilfe einer Listenbeschreibung in eine Liste.

let same<'a when 'a: equality> (xs: List<'a>) (ar: Array<'a>): Bool =
xs = [for x in ar -> x]

	Kontrollstrukturen und Ausnahmen (Präsenzaufgabe)
	Arrays (Präsenzaufgabe)
	Ausnahmen (Einreichaufgabe, 6 Punkte)
	Arrays und Zustand (Einreichaufgabe, 8 Punkte)

