
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 11: Konzepte der Programmierung (WS 2025/26)

Aufgabe 1 Kontrollstrukturen und Ausnahmen (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie dasselbe algorithmische Problem aus verschiedenen Blickrich-
tungen betrachten, um sich mit den Unterschieden der funktionalen und der imperativen Programmierung
vertraut zu machen. Sie können sich an den Vorlesungsfolien 836 bis 899 sowie an den Kapiteln 7.3 und 7.4
im Skript orientieren.

Schreiben Sie Ihre Lösungen in die Datei Find.fs aus der Vorlage Aufgabe-11-1.zip.

In den folgenden Teilaufgaben sollen Sie Funktionen schreiben, die das letzte Element einer Liste zurück-
geben, für welches ein vorgegebenes Prädikat zu true auswertet. In zwei der Teilaufgaben verwenden wir
dabei die folgende Ausnahme:

exception NotFound

Hinweis: Da anhand derselben Problemstellung verschiedene Konzepte eingeübt werden sollen, ist es nahe-
liegend, dass es nicht erlaubt ist, die Funktionen der einzelnen Teilaufgaben gegenseitig aufzurufen. Ver-
wenden Sie in Ihrer Lösung außerdem keine Bibliotheksfunktionen. Davon ausgenommen sind das Length
Attribut von Listen, bzw. List.length, sofern Sie diese verwenden möchten.

a) Schreiben Sie eine Funktion tryFindLast<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein Prä-
dikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true
auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zurückgegeben werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen (Schleifen) oder
Ausnahmen.

let rec tryFindLast <'a> (pred: 'a -> Bool) (xs: List<'a>): Option<'a> =
match xs with
| [] -> None
| y::ys ->

match tryFindLast pred ys with
| None -> if pred y then Some y else None
| Some z -> Some z

Im Fall, dass die übergebene Liste leer ist, geben wir None zurück. Falls nicht, rufen wir die Funktion
rekursiv mit der Restliste auf und matchen auf das Ergebnis. Gibt es in der Restliste kein letztes
Element, welches das Prädikat erfüllt, prüfen wir ob das Kopfelement y das Prädikat erfüllt. Falls
ja, können wir es mit Some y zurückgeben (durch den rekursiven Aufruf wissen wir ja, dass es kein
Element weiter hinten in der Liste geben kann, welches das Prädikat erfüllen könnte). Erfüllt auch y
das Prädikat nicht, geben wir None zurück. Sofern im rekursiven Aufruf in der Restliste ein Element
z gefunden wird, für welches das Prädikat zu true auswertet, geben wir dieses zurück (auch wenn y
das Prädikat erfüllt, liegt z weiter hinten in der Liste als y).

b) Schreiben Sie eine Funktion findLast<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Prädikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true auswertet.
Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen.

let rec findLast <'a> (pred: 'a -> Bool) (xs: List<'a>): 'a =
match xs with
| [] -> raise NotFound
| y::ys ->

try findLast pred ys with
| NotFound -> if pred y then y else raise NotFound

Wir gehen genauso vor wie in der ersten Teilaufgabe. Falls die übergebene Liste leer ist, können
wir direkt die NotFound Ausnahme werfen. Den rekursiven Aufruf matchen wir jedoch nicht, sondern
packen ihn in einen try Block ein. Ist der rekursive Aufruf erfolgreich, wird dessen Ergebnis als
Resultat zurückgegeben. Schlägt er fehl, so fangen wir die NotFound Ausnahme und prüfen wieder, ob
y das Prädikat erfüllt. Falls ja, geben wir y zurück. Ansonsten werfen wir die Ausnahme weiter.

c) Schreiben Sie eine Funktion tryFindLast2<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein
Prädikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu
true auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zurückgegeben
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen oder Ausnahmen.

let tryFindLast2 <'a> (pred: 'a -> Bool) (xs: List<'a>): Option<'a> =
let mutable last: Option<'a> = None
for x in xs do

if pred x then last <- Some x
last

Zunächst definieren wir eine veränderliche Variable last, die wir verwenden möchten, um das Ergeb-
nis zu speichern. Wir initialisieren sie mit None, da wir zu Beginn noch nicht wissen, ob wir überhaupt
ein Element in der Liste finden werden, welches das Prädikat erfüllt. Mit einer for Schleife iterieren
wir über die Listenelemente und prüfen, ob das aktuelle Element x das Prädikat erfüllt. Falls ja, sichern
wir das Element in der Variablen last (ein ggf. vorher darin gespeichertes Element überschreiben wir),
ansonsten tun wir nichts. Nachdem wir mit der Schleife die gesamte Liste durchlaufen haben, steht in
der Variablen last das letzte Element der Liste, welches das Prädikat erfüllt (oder None). Als Ergebnis
geben wir entsprechend last zurück.

d) Schreiben Sie eine Funktion findLast2<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Prädikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true auswer-
tet. Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen.

let findLast2 <'a> (pred: 'a -> Bool) (xs: List<'a>): 'a =
let mutable last: Option<'a> = None
for x in xs do

if pred x then last <- Some x
match last with
| None -> raise NotFound
| Some x -> x

Wir übernehmen den Großteil der Lösung aus der vorherigen Teilaufgabe. Anstelle last zurückzuge-
ben, prüfen wir, ob ein Element gefunden wurde. Falls nicht, werfen wir eine NotFound Ausnahme.
Ansonsten geben wir das gefundene Element x zurück.

2

Aufgabe 2 Arrays (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Arrays einüben. Sie können sich an den Vorle-
sungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript orientieren.

Schreiben Sie Ihre Lösungen in die Datei ArrayMap.fs aus der Vorlage Aufgabe-11-2.zip.

a) Schreiben Sie eine Funktion map<'a, 'b>: ('a -> 'b) -> Array<'a> -> Array<'b>, welche eine Funkti-
on f sowie ein Array ar nimmt und ein neues Array zurückgibt, welches die Anwendung von f auf jedes
Element von ar enthält.

let map<'a,'b> (f: 'a -> 'b) (ar: Array<'a>) : Array<'b> =
[| for x in ar -> f x |]

b) Schreiben Sie eine Funktion inplaceMap<'a>: ('a -> 'a) -> Array<'a> -> Unit, welche eine Funktion
f sowie ein Array ar nimmt und das Array ar in-place verändert, sodass jedes Element von ar durch die
Anwendung von f auf dieses Element ersetzt wird. Warum kann f nicht den Typ 'a -> 'b haben?

let inplaceMap <'a> (f: 'a -> 'a) (ar: Array<'a>) : Unit =
for i in 0 .. ar.Length - 1 do

ar.[i] <- f ar.[i]

f kann nicht den Typ 'a -> 'b haben, da wir in-place arbeiten und das Array ar nicht verändern
können, wenn f Elemente des Arrays auf Elemente eines anderen Typs abbildet. Insbesondere wäre
der Typ von ar während der Ausführung von inplaceMap nicht konsistent.

3

Aufgabe 3 Ausnahmen (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie Ausnahmen einüben. Sie können sich an den Vorlesungsfolien 853
bis 899 sowie am Skript Kapitel 7.4 orientieren.

Unter Berücksichtigung dieser Typ- und Ausnahmedefinitionen

type A = | A1 | A2 | A3 of String | A4 of Bool

exception E
exception E1 of Nat
exception E2 of A

betrachten wir den folgenden Ausdruck. Dabei ist f eine Funktion vom Typ Unit -> A.

try
match f() with
| A1 -> 22N + raise (E2 A2)
| A2 -> raise E
| A3 x -> raise (E1 4711N)
| A4 x when x -> 97N
| A4 x -> raise (E2 A1)

with
| E -> 4711N
| E1 n -> if n = 4711N then 50N else raise (E1 815N)
| E2 s -> match s with

| A1 -> 1N
| A2 -> 2N
| A3 x -> 3N
| A4 x -> raise (E2 (A4 (not x)))

Bestimmen Sie für die folgenden Implementierungen der Funktion f jeweils, zu welchem Wert obiger Aus-
druck auswertet. Kennzeichnen Sie geworfene Ausnahmen dabei, wie in der Vorlesung eingeführt, mit einem
Kästchen, die durch raise (E1 4711N) geworfene Ausnahme also durch E1 4711N .

a) let f() = A1

2N

b) let f() = A4 false

1N

c) let f() = raise (E2 (A4 true))

E2 (A4 false)

4

Aufgabe 4 Arrays und Zustand (Einreichaufgabe, 8 Punkte)

Motivation: In dieser Aufgabe sollen Sie Arrays und Kontrollstrukturen (Schleifen) einüben. Sie können
sich an den Vorlesungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript
orientieren.

Schreiben Sie Ihre Lösungen in die Datei Arrays.fs aus der Vorlage Aufgabe-11-4.zip.

In den folgenden Teilaufgaben betrachten wir Funktionen, die auf Arrays arbeiten. Es steht Ihnen, frei die
Funktionen rekursiv oder imperativ zu implementieren.

Hinweis: Beachten Sie, dass Arrays mit nichtnegativen Ganzzahlen vom Typ Int indiziert werden. Der Typ
der natürlichen Zahlen Nat wird als Index leider nicht unterstützt.

Hinweis: Es gibt mehrere Möglichkeiten ein Array mit Hilfe von Schleifen zu durchlaufen. Einerseits kann
mit for oder while und einer Zählvariable der Zugriff auf die Arrayelemente direkt über deren „Hausnum-
mer“ erfolgen. Andererseits kann für ein Array armit for x in ar auch direkt über die Arrayelemente selbst
iteriert werden. Beispiele dazu finden Sie im Skript auf den Seiten 408 und 409.

Hinweis: Sie können Funktionen aus vorherigen Teilaufgaben verwenden, wenn Sie möchten. Verwenden Sie
in Ihrer Lösung keine Bibliotheksfunktionen. Davon ausgenommen sind das Length-Attribut von Listen und
Arrays bzw. die Funktionen List.length und Array.length. Konvertieren Sie in Ihrer Lösung nicht zwischen
Arrays und Listen hin und her, außer wenn explizit gefordert.

a) Schreiben Sie eine Funktion swap<'a>: Array<'a> -> Int * Int -> Unit, die ein Array sowie zwei Indi-
zes nimmt und die Elemente an den Positionen der Indizes vertauscht.

let swap<'a> (ar: Array<'a>) (i: Int, j: Int): Unit =
let tmp = ar.[i]
ar.[i] <- ar.[j]
ar.[j] <- tmp

S. Folie 851.

b) Schreiben Sie eine Funktion insertionsort<'a when 'a: comparison>: Array<'a> -> Unit, die ein Array
nimmt und dieses in-place sortiert (also ohne dabei ein neues Array zu konstruieren). Implementieren
Sie den Insertionsort1 Algorithmus.

let insertionsort <'a when 'a: comparison > (ar: Array<'a>): Unit =
let n = ar.Length
for i in 1..(n-1) do

let mutable j = i
while j > 0 && ar.[j-1] > ar.[j] do

swap ar (j-1, j)
j <- j-1

Unsere Insertionsort-Implementierung sortiert das Array von links nach rechts. Die äußere Schleife
gibt vor, bis wohin das Array bereits sortiert ist. Die innere Schleife nimmt das nächste Element und
schiebt es durch Vertauschungen so weit nach links, bis es an der richtigen Stelle steht.

Insertionsort ist ein relativ intuitives, aber ineffizientes Sortierverfahren (Worstcase-Laufzeit quadra-
tisch in der Länge des Arrays).

1s. z.B. https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

5

https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

c) Schreiben Sie eine Funktion rotate<'a>: Array<'a> -> Unit, welche das übergebene Array in-place ro-
tiert, also das erste Element an die zweite Stelle schiebt, das zweite an die dritte, usw. Das letzte Element
wird an die erste Stelle geschoben.

let rotate<'a> (ar: Array<'a>) : Unit =
let n = ar.Length
if n > 0 then

let nth = ar.[n-1]
for i in [n-1..(-1)..1] do

ar.[i] <- ar.[i-1]
ar.[0] <- nth

//alternativ:
let rotate2<'a> (ar: Array<'a>) : Unit =

let n = ar.Length
for i in [n-1..(-1)..1] do

swap ar (i-1, i)

Wir merken uns das letzte Element und schieben alle anderen Elemente um eine Stelle nach rechts.
Dann schreiben wir das letzte Element an die erste Stelle.

d) Schreiben Sie eine Funktion same<'a when 'a: equality>: List<'a> -> Array'<a> -> Bool, die eine Lis-
te sowie ein Array nimmt und zurückgibt, ob die Elemente an korrespondierenden Stellen in der Liste
und im Array gleich sind. Wenn die Liste und das Array unterschiedlich lang sind, ist das Ergebnis der
same Funktion false. Konvertieren Sie dazu das Array mithilfe einer Listenbeschreibung in eine Liste.

let same<'a when 'a: equality> (xs: List<'a>) (ar: Array<'a>): Bool =
xs = [for x in ar -> x]

6

	Kontrollstrukturen und Ausnahmen (Präsenzaufgabe)
	Arrays (Präsenzaufgabe)
	Ausnahmen (Einreichaufgabe, 6 Punkte)
	Arrays und Zustand (Einreichaufgabe, 8 Punkte)

