
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Übungsblatt 11: Konzepte der Programmierung (WS 2025/26)

Ausgabe: 20. Januar 2026
Abgabe: 27./28./29. Januar 2026, siehe Homepage

Aufgabe 1 Kontrollstrukturen und Ausnahmen (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie dasselbe algorithmische Problem aus verschiedenen Blickrich-
tungen betrachten, um sich mit den Unterschieden der funktionalen und der imperativen Programmierung
vertraut zu machen. Sie können sich an den Vorlesungsfolien 836 bis 899 sowie an den Kapiteln 7.3 und 7.4
im Skript orientieren.

Schreiben Sie Ihre Lösungen in die Datei Find.fs aus der Vorlage Aufgabe-11-1.zip.

In den folgenden Teilaufgaben sollen Sie Funktionen schreiben, die das letzte Element einer Liste zurück-
geben, für welches ein vorgegebenes Prädikat zu true auswertet. In zwei der Teilaufgaben verwenden wir
dabei die folgende Ausnahme:

exception NotFound

Hinweis: Da anhand derselben Problemstellung verschiedene Konzepte eingeübt werden sollen, ist es nahe-
liegend, dass es nicht erlaubt ist, die Funktionen der einzelnen Teilaufgaben gegenseitig aufzurufen. Ver-
wenden Sie in Ihrer Lösung außerdem keine Bibliotheksfunktionen. Davon ausgenommen sind das Length
Attribut von Listen, bzw. List.length, sofern Sie diese verwenden möchten.

a) Schreiben Sie eine Funktion tryFindLast<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein Prä-
dikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true
auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zurückgegeben werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen (Schleifen) oder
Ausnahmen.

b) Schreiben Sie eine Funktion findLast<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Prädikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true auswertet.
Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen werden.
Schreiben Sie eine rekursive Funktion, verwenden Sie keine Kontrollstrukturen.

c) Schreiben Sie eine Funktion tryFindLast2<'a>: ('a -> Bool) -> List<'a> -> Option<'a>, welche ein
Prädikat pred sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu
true auswertet. Wenn es in der gesamten Liste kein solches Element gibt, soll None zurückgegeben
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen oder Ausnahmen.

d) Schreiben Sie eine Funktion findLast2<'a>: ('a -> Bool) -> List<'a> -> 'a, welche ein Prädikat pred
sowie eine Liste xs nimmt und das letzte Element der Liste zurückgibt, für das pred zu true auswer-
tet. Wenn es in der gesamten Liste kein solches Element gibt, soll die Ausnahme NotFound geworfen
werden. Schreiben Sie die Funktion imperativ mit Hilfe von Kontrollstrukturen, verwenden Sie keine
rekursiven Funktionen.

https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/uebung/

Aufgabe 2 Arrays (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie den Umgang mit Arrays einüben. Sie können sich an den Vorle-
sungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript orientieren.

Schreiben Sie Ihre Lösungen in die Datei ArrayMap.fs aus der Vorlage Aufgabe-11-2.zip.

a) Schreiben Sie eine Funktion map<'a, 'b>: ('a -> 'b) -> Array<'a> -> Array<'b>, welche eine Funkti-
on f sowie ein Array ar nimmt und ein neues Array zurückgibt, welches die Anwendung von f auf jedes
Element von ar enthält.

b) Schreiben Sie eine Funktion inplaceMap<'a>: ('a -> 'a) -> Array<'a> -> Unit, welche eine Funktion
f sowie ein Array ar nimmt und das Array ar in-place verändert, sodass jedes Element von ar durch die
Anwendung von f auf dieses Element ersetzt wird. Warum kann f nicht den Typ 'a -> 'b haben?

Aufgabe 3 Ausnahmen (Einreichaufgabe, 6 Punkte)

Motivation: In dieser Aufgabe sollen Sie Ausnahmen einüben. Sie können sich an den Vorlesungsfolien 853
bis 899 sowie am Skript Kapitel 7.4 orientieren.

Unter Berücksichtigung dieser Typ- und Ausnahmedefinitionen

type A = | A1 | A2 | A3 of String | A4 of Bool

exception E
exception E1 of Nat
exception E2 of A

betrachten wir den folgenden Ausdruck. Dabei ist f eine Funktion vom Typ Unit -> A.

try
match f() with
| A1 -> 22N + raise (E2 A2)
| A2 -> raise E
| A3 x -> raise (E1 4711N)
| A4 x when x -> 97N
| A4 x -> raise (E2 A1)

with
| E -> 4711N
| E1 n -> if n = 4711N then 50N else raise (E1 815N)
| E2 s -> match s with

| A1 -> 1N
| A2 -> 2N
| A3 x -> 3N
| A4 x -> raise (E2 (A4 (not x)))

Bestimmen Sie für die folgenden Implementierungen der Funktion f jeweils, zu welchem Wert obiger Aus-
druck auswertet. Kennzeichnen Sie geworfene Ausnahmen dabei, wie in der Vorlesung eingeführt, mit einem
Kästchen, die durch raise (E1 4711N) geworfene Ausnahme also durch E1 4711N .

a) let f() = A1

b) let f() = A4 false

c) let f() = raise (E2 (A4 true))

Aufgabe 4 Arrays und Zustand (Einreichaufgabe, 8 Punkte)

Motivation: In dieser Aufgabe sollen Sie Arrays und Kontrollstrukturen (Schleifen) einüben. Sie können
sich an den Vorlesungsfolien 404 bis 427 und 836 bis 852 sowie an den Kapiteln 4.4 und 7.3 im Skript
orientieren.

Schreiben Sie Ihre Lösungen in die Datei Arrays.fs aus der Vorlage Aufgabe-11-4.zip.

In den folgenden Teilaufgaben betrachten wir Funktionen, die auf Arrays arbeiten. Es steht Ihnen, frei die
Funktionen rekursiv oder imperativ zu implementieren.

Hinweis: Beachten Sie, dass Arrays mit nichtnegativen Ganzzahlen vom Typ Int indiziert werden. Der Typ
der natürlichen Zahlen Nat wird als Index leider nicht unterstützt.

Hinweis: Es gibt mehrere Möglichkeiten ein Array mit Hilfe von Schleifen zu durchlaufen. Einerseits kann
mit for oder while und einer Zählvariable der Zugriff auf die Arrayelemente direkt über deren „Hausnum-
mer“ erfolgen. Andererseits kann für ein Array armit for x in ar auch direkt über die Arrayelemente selbst
iteriert werden. Beispiele dazu finden Sie im Skript auf den Seiten 408 und 409.

Hinweis: Sie können Funktionen aus vorherigen Teilaufgaben verwenden, wenn Sie möchten. Verwenden Sie
in Ihrer Lösung keine Bibliotheksfunktionen. Davon ausgenommen sind das Length-Attribut von Listen und
Arrays bzw. die Funktionen List.length und Array.length. Konvertieren Sie in Ihrer Lösung nicht zwischen
Arrays und Listen hin und her, außer wenn explizit gefordert.

a) Schreiben Sie eine Funktion swap<'a>: Array<'a> -> Int * Int -> Unit, die ein Array sowie zwei Indi-
zes nimmt und die Elemente an den Positionen der Indizes vertauscht.

b) Schreiben Sie eine Funktion insertionsort<'a when 'a: comparison>: Array<'a> -> Unit, die ein Array
nimmt und dieses in-place sortiert (also ohne dabei ein neues Array zu konstruieren). Implementieren
Sie den Insertionsort1 Algorithmus.

c) Schreiben Sie eine Funktion rotate<'a>: Array<'a> -> Unit, welche das übergebene Array in-place ro-
tiert, also das erste Element an die zweite Stelle schiebt, das zweite an die dritte, usw. Das letzte Element
wird an die erste Stelle geschoben.

d) Schreiben Sie eine Funktion same<'a when 'a: equality>: List<'a> -> Array'<a> -> Bool, die eine Lis-
te sowie ein Array nimmt und zurückgibt, ob die Elemente an korrespondierenden Stellen in der Liste
und im Array gleich sind. Wenn die Liste und das Array unterschiedlich lang sind, ist das Ergebnis der
same Funktion false. Konvertieren Sie dazu das Array mithilfe einer Listenbeschreibung in eine Liste.

1s. z.B. https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

https://en.wikipedia.org/wiki/Insertion_sort#Algorithm

	Kontrollstrukturen und Ausnahmen (Präsenzaufgabe)
	Arrays (Präsenzaufgabe)
	Ausnahmen (Einreichaufgabe, 6 Punkte)
	Arrays und Zustand (Einreichaufgabe, 8 Punkte)

