Prof. Dr. Ralf Hinze RPTU

Cass Alexandru, M.Sc. Fachbereich Informatik
Alexander Dinges, M.Sc.

Felix Winkler, M.Sc. AG Programmiersprachen

Losungshinweise/-vorschlage zum
Ubungsblatt 12: Konzepte der Programmierung (WS 2025/26)

Studie Darstellung Fehlermeldungen Wir haben an einer alternativen Darstellung der Fehlermeldun-
gen in ExClaim gearbeitet. Diese Woche bekommen Gruppen 2, 4, 6, 8, 10 Fehlermeldungen wie gewohnt
dargestellt, wiahrend Gruppen 1, 3, 5, 7, 9 und 11 die alternative Darstellung bekommen. Wir aggregieren
Daten iiber diese Gruppen zur Verwendung der Testfunktion in ExClaim.

Aufgabe 1 Untertypen (Prasenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit Untertypbeziehungen beschiftigen. Sie kdnnen sich an
den Vorlesungsfolien 901 bis 969 sowie an den Kapiteln 8.1 und 8.2 im Skript orientieren.

Es gelten die Untertypbeziehungen D < C, C < A und C < B, die in der nebenstehenden e e
Abbildung visualisiert sind.

In der folgenden Tabelle werden je zwei Typen in Relation gesetzt: e

e 11 < 1, bedeutet, dass #; ein Untertyp von 1, ist (#{ < f), nicht jedoch #, ein
Untertyp von ?;.

e 11 > 1, bedeutet, dass 7, ein Untertyp von #; ist (#; < #1), nicht jedoch #; ein e
Untertyp von ?,.

e 11 || t; bedeutet, dass #; und #, unvergleichbar sind, das heil3it es gilt weder #; < 1,
noch #, < 1.

Fiillen Sie die Liicken in der Tabelle aus. In der ersten und dritten Spalte miissen Sie einen Typ eintragen, in
der zweiten Spalte eine Relation (< oder > oder ||).

Zur Erinnerung: Die folgenden Deduktionsregeln gelten fiir die Relation »<«:

n<n h<13 nh <t A <t n<t
n=<n hoxty St xt) nh—on<t -

Relation

t

D A
[A]oder[B] > C
AxC < |A+A]oder|A + B|
A*B [11] BxA
CxD > D+D
A—C C—C
B—D C-C
C—D > |A — D|oder| B — D]
C—A B—-D
D—A [11] C—B

Aufgabe 2 Mini CAS (Einreichaufgabe, 30 Punkte)

Motivation: In dieser Aufgabe sollen Sie ein Problem sowohl funktional als auch objektorientiert imple-
mentieren und beide Modelle miteinander vergleichen.

Schreiben Sie Ihre Losungen in die Datei Calculus. fs aus der Vorlage Aufgabe-12-2.zip.

Bei ihrem Job als Mathe-Nachhilfelehrerin muss Lisa Lista viele Aufgaben korrigieren. Um sich die Arbeit
etwas zu erleichtern, beschlief3t sie ein kleines Computer Algebra System (CAS) zu entwickeln, mit dem sie
Ableitungen von einigen eindimensionalen Funktionen symbolisch bestimmen kann.

Lisa Lista schwebt folgende funktionale Modellierung vor:

type Function =

| Const of Nat // Konstante Funktion f(x) = ¢

| Id // Identitat f(x) = x

| Add of Function * Function // Addition f(x) = g(x) + h(x)
| Mul of Function * Function // Multiplikation f(x) = gx) * h(x)
| Pow of Function * Nat // Potenz f(x) = g(x) ' n

| Comp of Function * Function // Komposition f(x) = gCh(x))

Die Idee ist, dass jedes Element vom Typ Function eine reelle Funktion in unserem CAS représentiert,
die wir jedoch nur an den Stellen der natiirlichen Zahlen (R N N) auswerten (damit sind Ableitungen wie
gewohnt definiert und wir vermeiden es in F# FlieBkommazahlen zu verwenden).

So reprisentiert zum Beispiel Constant 1N die Funktion f(x) = 1, Id reprédsentiert f(x) = x, Add (Id,
Constant 2N) reprisentiert f(x) = x +2, Mul (Id, Constant 2N) reprédsentiert f(x) = x -2 und Add (Mul(Id,
1d), Mul(Constant 2N, Id)) reprdsentiert f(x) =x-x+2-x.

Auflerdem konnen wir Funktionen mit Comp verketten, zum Beispiel reprisentiert Mul (Comp(Pow(Id, 2N),
Add(Id, Constant 3N)), Add(Id, Constant 4N)) die Funktion f(x) = (x + 3)* - (x + 4). Das erste Argument
bezeichnet also die dullere Funktion, das zweite Argument die innere Funktion.

Lisa Lista mochte fiir ihr CAS drei Operationen (F#-Funktionen) implementieren:
e toString: Function -> String stellt die gegebene CAS-Funktion (korrekt geklammert) als String dar.

e apply: Function -> Nat -> Nat nimmt eine CAS-Funktion f sowie eine natiirliche Zahl n und berech-
net das Ergebnis von f angewendet auf n.

e derive: Function -> Function berechnet die Ableitung der gegebenen CAS-Funktion.

Harry Hacker schldgt eine objektorientierte Modellierung vor und présentiert folgende Schnittstelle:

type IFunction =
abstract member ToString: unit -> string
abstract member Apply: Nat -> Nat
abstract member Derive: unit -> IFunction

Er mochte dann fiir jede Art von unterstiitzter CAS-Funktion einen Objektkonstruktor implementieren, also
eine F#-Funktion die ein Objekt vom Typ IFunction zuriickgibt.

Lisa Lista und Harry Hacker haben bereits begonnen, das CAS zu implementieren. Sie finden den unfertigen
Code im Template zu dieser Aufgabe. Beide haben die Operationen zur Darstellung als String und zum
Anwenden der Funktion fiir die konstante Funktion, die Identitit und die Addition bereits umgesetzt. Es
fehlen noch Multiplikation, Potenz und Verkettung sowie die Berechnung der Ableitung.

Hinweis: Wir testen in ExClaim auf Aquivalenz statt Gleichheit beziiglich unserer Referenzimplementie-
rung. Insbesondere diirfen Sie bei toString iiberfliissige Klammern weglassen. Desweiteren diirfen Sie bei
derive arithmetische Simplifikationen durchfiihren.

a) Erweitern Sie beide Modelle um Multiplikation, Potenz und Verkettung. Fiir Lisas funktionales Modell
miissen Sie dazu zunichst in der Typdefinition die drei vorbereiteten Zeilen aktivieren.

Hinweise: Stellen Sie die Potenzfunktion mit dem Zeichen " dar, die Funktion Pow (Id, 2N) demnach als
x"2. Zur Implementierung von apply konnen Sie den F#-Operator ** verwenden. Zur Darstellung der
Funktionskomposition wird iiblicherweise das Zeichen o verwendet, nutzen Sie der Einfachheit halber
den Kleinbuchstaben o.

Funktionales Modell
Zusitzliche Fille fiir toString:

| Mul (f1, f2) -> "(" + toString f1 + " * " + toString f2 + ")"
| Pow (f1, n) -> toString f1 + " A " + show n
| Comp (f1, £2) -> "(" + toString f1 + " o " + toString f2 + ")"

Zusitzliche Fille fiir apply:

| Mul (f1, £2) -> apply f1 x * apply £f2 x

| Pow (£f1, n) -> apply f1 x ** n
| Comp (£f1, f2) -> apply f1 (apply f2 x)

Objektorientiertes Modell (die Derive members sind bereits fiir die ndchste Teilaufgabe)

let rec mul (f1: IFunction, f2: IFunction): IFunction =
{ new IFunction with
member self.ToString (): String =
"(" + f1.ToString OO + " * " + f2.ToString () + ")"
member self.Apply (x: Nat): Nat =
f1.Apply(x) * f2.Apply(x)
member self.Derive (): IFunction =
add (mul (fl1.Derive(), f2), mul (f1, f2.Derive()))
}

let rec pow (fl1: IFunction, n: Nat): IFunction =
{ new IFunction with
member self.ToString (): String =
f1.ToString (O + " ~ " + show n
member self.Apply (x: Nat): Nat =
f1.Apply(x) ** n
member self.Derive (): IFunction =
mul (mul (constant n, pow (fl, (n-1N))), fl.Derive())
}

let rec comp (f1: IFunction, f2: IFunction): IFunction =
{ new IFunction with

member self.ToString (): String =
"(" + £1.ToString O + " o " + £2.ToString (O + ")"

member self.Apply (x: Nat): Nat =
f1.Apply(£f2.Apply(x))

member self.Derive (): IFunction =
mul (comp (fl1.Derive(), f2), f2.Derive())

b) Erweitern Sie beide Modelle um die Berechnung der Ableitung. Fiir Harrys objektorientiertes Modell
miissen Sie dazu zundchst in der Schnittstellendefinition die vorbereitete Zeile aktivieren.

Hinweise: Fiir die Ableitungsregeln konnen Sie Ihr altes Mathematik-Schulbuch oder eine Formelsamm-
lung konsultieren. Denken Sie an die Produktregel und die Kettenregel!

Funktionales Modell

let rec derive (f: Function): Function =

match f with

| Const n -> Const ON

| Id -> Const 1IN

| Add (f1, £2) -> Add (derive fl1, derive f2)

| Mul (f1, £f2) -> Add (Mul (derive f1, £f2), Mul (f1, derive £2))

| Pow (£f1, n) -> Mul (Mul (Const n, Pow (f1, n - 1N)), derive f£f1)

| Comp (f1, £2) -> Mul (Comp (derive f1, f2), derive f£f2)
Objektorientiertes Modell (siche auch Losung der vorherigen Teilaufgabe)

Erweiterung von const

member self.Derive (): IFunction = constant ON

Erweiterung von id

member self.Derive (): IFunction = constant 1IN

Erweiterung von add

member self.Derive (): IFunction = add (fl1.Derive(), f2.Derive())

¢) Nachdem Sie sowohl das funktionale als auch das objektorientierte Modell erweitert haben, beantworten
Sie dazu folgende Fragen. Begriinden Sie Ihre Antworten (jeweils maximal 50 Worter).

1. Welches der Modelle l4sst sich leichter um zusitzliche Operationen (apply, toString, derive) erwei-
tern?

Das funktionale Modell, weil man hier lediglich neue F#-Funktionen hinzufiigen muss und keine
Anderung der bisherigen Definitionen notwendig ist.

2. Welches der Modelle lisst sich leichter um zusétzliche Arten von CAS-Funktionen (constant, id,
add, mul, pow, comp) erweitern?

Das objektorientierte Modell, weil man hier lediglich neue Objektkonstruktoren hinzufiigen
muss und keine Anderung der bisherigen Definitionen notwendig ist.

3. Welches der Modelle ist im Bezug auf kiinftige Erweiterungen unseres CAS die bessere Wahl?

Es ist wahrscheinlicher, dass zusétzliche Arten von Funktionen ergénzt werden (denkbar wéren
beispielsweise trigonometrische Funktionen wie Sinus und Cosinus), daher ist das objektorien-
tierte Modell die bessere Wahl.

Aufgabe 3 Untertypen (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie die Regeln der statischen Semantik von Schnittstellen und Unter-
typen einiiben. Sie konnen sich an den Vorlesungsfolien 899 bis 967 sowie an den Kapiteln 8.1 und 8.2 im
Skript orientieren.

type A = type C =
interface interface
abstract member f: Unit -> Nat inherit A
end abstract member h: String -> Nat
end
type B =
interface type D =
inherit A interface
abstract member g: Nat -> String inherit C
end abstract member i: Nat -> Unit
end

Verwenden Sie die Schnittstellentypdefinitionen von oben, um den Typ der folgenden Ausdriicke mit einem
vollstdndigen Beweisbaum anzugeben. Benutzen Sie die Regeln der statischen Semantik aus der Vorlesung.

a) fun (s : B * D) -> ((snd s) :> C).h ((fst s).g 1IN)

Verwende X := {s — B * D}

Xrs:BxD YX+s:BxD

2tsnd s: D D<C X+ fst s: B

Yk (snd s) :> C:C X+ (fst s).g: Nat — String 2+ 1IN : Nat
>+ ((snd s) :> Q) .h: String — Nat 2+ (fst s).g IN: String

2+ ((snd s) :> O.h ((fst s).g 1IN) : Nat
Orfun (s : B * D) -> ((snd s) :> OO.h ((fst s).g 1IN) : BxD — Nat

b) fun (s: A -> D) -> (fun (b: B) -> (s b).f)

Verwende X :={s+— A — D,b— B}

B<A D<A
+ts:A—>D FA->D<B—-A
2Fs:B—o A +b:B
s b:A
2+ (s b).f: Unit > Nat 2+ Q :Unit

(s b).f Q: Nat
{s—>A—>D}+fun (b: B) -> (s b).f O:B— Nat
Or fun (s: A -> D) > (fun (b: B) -> (s b).f) : (A— D) —» (B — Nat)

	Untertypen (Präsenzaufgabe)
	Mini CAS (Einreichaufgabe, 30 Punkte)
	Untertypen (Trainingsaufgabe)

