
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Lösungshinweise/-vorschläge zum
Übungsblatt 12: Konzepte der Programmierung (WS 2025/26)

Studie Darstellung Fehlermeldungen Wir haben an einer alternativen Darstellung der Fehlermeldun-
gen in ExClaim gearbeitet. Diese Woche bekommen Gruppen 2, 4, 6, 8, 10 Fehlermeldungen wie gewohnt
dargestellt, während Gruppen 1, 3, 5, 7, 9 und 11 die alternative Darstellung bekommen. Wir aggregieren
Daten über diese Gruppen zur Verwendung der Testfunktion in ExClaim.

Aufgabe 1 Untertypen (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit Untertypbeziehungen beschäftigen. Sie können sich an
den Vorlesungsfolien 901 bis 969 sowie an den Kapiteln 8.1 und 8.2 im Skript orientieren.

Es gelten die Untertypbeziehungen D ≼ C, C ≼ A und C ≼ B, die in der nebenstehenden
Abbildung visualisiert sind.

In der folgenden Tabelle werden je zwei Typen in Relation gesetzt:

• t1 ≺ t2 bedeutet, dass t1 ein Untertyp von t2 ist (t1 ≼ t2), nicht jedoch t2 ein
Untertyp von t1.

• t1 ≻ t2 bedeutet, dass t2 ein Untertyp von t1 ist (t2 ≼ t1), nicht jedoch t1 ein
Untertyp von t2.

• t1 ∥ t2 bedeutet, dass t1 und t2 unvergleichbar sind, das heißt es gilt weder t1 ≼ t2
noch t2 ≼ t1.

A B

C

D

Füllen Sie die Lücken in der Tabelle aus. In der ersten und dritten Spalte müssen Sie einen Typ eintragen, in
der zweiten Spalte eine Relation (≺ oder ≻ oder ∥).

Zur Erinnerung: Die folgenden Deduktionsregeln gelten für die Relation »≼«:

t1 ≼ t2 t2 ≼ t3
t1 ≼ t3

t1 ≼ t′1 t2 ≼ t′2
t1 ∗ t2 ≼ t′1 ∗ t′2

t′1 ≼ t1 t2 ≼ t′2
t1 → t2 ≼ t′1 → t′2

t1 Relation t2

D ≺ A

A oder B ≻ C

A ∗C ≺ A ∗ A oder A ∗ B

A ∗ B ∥ B ∗ A

C ∗ D ≻ D ∗ D

A→ C ≺ C → C

B→ D ≺ C → C

C → D ≻ A→ D oder B→ D

C → A ≻ B→ D

D→ A ∥ C → B

2

Aufgabe 2 Mini CAS (Einreichaufgabe, 30 Punkte)

Motivation: In dieser Aufgabe sollen Sie ein Problem sowohl funktional als auch objektorientiert imple-
mentieren und beide Modelle miteinander vergleichen.

Schreiben Sie Ihre Lösungen in die Datei Calculus.fs aus der Vorlage Aufgabe-12-2.zip.

Bei ihrem Job als Mathe-Nachhilfelehrerin muss Lisa Lista viele Aufgaben korrigieren. Um sich die Arbeit
etwas zu erleichtern, beschließt sie ein kleines Computer Algebra System (CAS) zu entwickeln, mit dem sie
Ableitungen von einigen eindimensionalen Funktionen symbolisch bestimmen kann.

Lisa Lista schwebt folgende funktionale Modellierung vor:

type Function =
| Const of Nat // Konstante Funktion f(x) = c
| Id // Identität f(x) = x
| Add of Function * Function // Addition f(x) = g(x) + h(x)
| Mul of Function * Function // Multiplikation f(x) = g(x) * h(x)
| Pow of Function * Nat // Potenz f(x) = g(x) ^ n
| Comp of Function * Function // Komposition f(x) = g(h(x))

Die Idee ist, dass jedes Element vom Typ Function eine reelle Funktion in unserem CAS repräsentiert,
die wir jedoch nur an den Stellen der natürlichen Zahlen

(
R ∩ N

)
auswerten (damit sind Ableitungen wie

gewohnt definiert und wir vermeiden es in F# Fließkommazahlen zu verwenden).

So repräsentiert zum Beispiel Constant 1N die Funktion f (x) = 1, Id repräsentiert f (x) = x, Add (Id,
Constant 2N) repräsentiert f (x) = x + 2, Mul (Id, Constant 2N) repräsentiert f (x) = x · 2 und Add (Mul(Id,
Id), Mul(Constant 2N, Id)) repräsentiert f (x) = x · x + 2 · x.

Außerdem können wir Funktionen mit Comp verketten, zum Beispiel repräsentiert Mul(Comp(Pow(Id, 2N),
Add(Id, Constant 3N)), Add(Id, Constant 4N)) die Funktion f (x) =

(
x + 3

)2
·
(
x + 4

)
. Das erste Argument

bezeichnet also die äußere Funktion, das zweite Argument die innere Funktion.

Lisa Lista möchte für ihr CAS drei Operationen (F#-Funktionen) implementieren:

• toString: Function -> String stellt die gegebene CAS-Funktion (korrekt geklammert) als String dar.

• apply: Function -> Nat -> Nat nimmt eine CAS-Funktion f sowie eine natürliche Zahl n und berech-
net das Ergebnis von f angewendet auf n.

• derive: Function -> Function berechnet die Ableitung der gegebenen CAS-Funktion.

Harry Hacker schlägt eine objektorientierte Modellierung vor und präsentiert folgende Schnittstelle:

type IFunction =
abstract member ToString: unit -> string
abstract member Apply: Nat -> Nat
abstract member Derive: unit -> IFunction

Er möchte dann für jede Art von unterstützter CAS-Funktion einen Objektkonstruktor implementieren, also
eine F#-Funktion die ein Objekt vom Typ IFunction zurückgibt.

Lisa Lista und Harry Hacker haben bereits begonnen, das CAS zu implementieren. Sie finden den unfertigen
Code im Template zu dieser Aufgabe. Beide haben die Operationen zur Darstellung als String und zum
Anwenden der Funktion für die konstante Funktion, die Identität und die Addition bereits umgesetzt. Es
fehlen noch Multiplikation, Potenz und Verkettung sowie die Berechnung der Ableitung.

Hinweis: Wir testen in ExClaim auf Äquivalenz statt Gleichheit bezüglich unserer Referenzimplementie-
rung. Insbesondere dürfen Sie bei toString überflüssige Klammern weglassen. Desweiteren dürfen Sie bei
derive arithmetische Simplifikationen durchführen.

3

a) Erweitern Sie beide Modelle um Multiplikation, Potenz und Verkettung. Für Lisas funktionales Modell
müssen Sie dazu zunächst in der Typdefinition die drei vorbereiteten Zeilen aktivieren.

Hinweise: Stellen Sie die Potenzfunktion mit dem Zeichen ˆ dar, die Funktion Pow (Id, 2N) demnach als
xˆ2. Zur Implementierung von apply können Sie den F#-Operator ** verwenden. Zur Darstellung der
Funktionskomposition wird üblicherweise das Zeichen ◦ verwendet, nutzen Sie der Einfachheit halber
den Kleinbuchstaben o.

Funktionales Modell

Zusätzliche Fälle für toString:

| Mul (f1, f2) -> "(" + toString f1 + " * " + toString f2 + ")"
| Pow (f1, n) -> toString f1 + " ^ " + show n
| Comp (f1, f2) -> "(" + toString f1 + " o " + toString f2 + ")"

Zusätzliche Fälle für apply:

| Mul (f1, f2) -> apply f1 x * apply f2 x
| Pow (f1, n) -> apply f1 x ** n
| Comp (f1, f2) -> apply f1 (apply f2 x)

Objektorientiertes Modell (die Derive members sind bereits für die nächste Teilaufgabe)

let rec mul (f1: IFunction , f2: IFunction): IFunction =
{ new IFunction with

member self.ToString (): String =
"(" + f1.ToString () + " * " + f2.ToString () + ")"

member self.Apply (x: Nat): Nat =
f1.Apply(x) * f2.Apply(x)

member self.Derive (): IFunction =
add (mul (f1.Derive(), f2), mul (f1, f2.Derive()))

}

let rec pow (f1: IFunction , n: Nat): IFunction =
{ new IFunction with

member self.ToString (): String =
f1.ToString () + " ^ " + show n

member self.Apply (x: Nat): Nat =
f1.Apply(x) ** n

member self.Derive (): IFunction =
mul (mul (constant n, pow (f1, (n-1N))), f1.Derive())

}

let rec comp (f1: IFunction , f2: IFunction): IFunction =
{ new IFunction with

member self.ToString (): String =
"(" + f1.ToString () + " o " + f2.ToString () + ")"

member self.Apply (x: Nat): Nat =
f1.Apply(f2.Apply(x))

member self.Derive (): IFunction =
mul (comp (f1.Derive(), f2), f2.Derive())

}

b) Erweitern Sie beide Modelle um die Berechnung der Ableitung. Für Harrys objektorientiertes Modell
müssen Sie dazu zunächst in der Schnittstellendefinition die vorbereitete Zeile aktivieren.

Hinweise: Für die Ableitungsregeln können Sie Ihr altes Mathematik-Schulbuch oder eine Formelsamm-
lung konsultieren. Denken Sie an die Produktregel und die Kettenregel!

4

Funktionales Modell

let rec derive (f: Function): Function =
match f with
| Const n -> Const 0N
| Id -> Const 1N
| Add (f1, f2) -> Add (derive f1, derive f2)
| Mul (f1, f2) -> Add (Mul (derive f1, f2), Mul (f1, derive f2))
| Pow (f1, n) -> Mul (Mul (Const n, Pow (f1, n - 1N)), derive f1)
| Comp (f1, f2) -> Mul (Comp (derive f1, f2), derive f2)

Objektorientiertes Modell (siehe auch Lösung der vorherigen Teilaufgabe)

Erweiterung von const

member self.Derive (): IFunction = constant 0N

Erweiterung von id

member self.Derive (): IFunction = constant 1N

Erweiterung von add

member self.Derive (): IFunction = add (f1.Derive(), f2.Derive())

c) Nachdem Sie sowohl das funktionale als auch das objektorientierte Modell erweitert haben, beantworten
Sie dazu folgende Fragen. Begründen Sie Ihre Antworten (jeweils maximal 50 Wörter).

1. Welches der Modelle lässt sich leichter um zusätzliche Operationen (apply, toString, derive) erwei-
tern?

Das funktionale Modell, weil man hier lediglich neue F#-Funktionen hinzufügen muss und keine
Änderung der bisherigen Definitionen notwendig ist.

2. Welches der Modelle lässt sich leichter um zusätzliche Arten von CAS-Funktionen (constant, id,
add, mul, pow, comp) erweitern?

Das objektorientierte Modell, weil man hier lediglich neue Objektkonstruktoren hinzufügen
muss und keine Änderung der bisherigen Definitionen notwendig ist.

3. Welches der Modelle ist im Bezug auf künftige Erweiterungen unseres CAS die bessere Wahl?

Es ist wahrscheinlicher, dass zusätzliche Arten von Funktionen ergänzt werden (denkbar wären
beispielsweise trigonometrische Funktionen wie Sinus und Cosinus), daher ist das objektorien-
tierte Modell die bessere Wahl.

5

Aufgabe 3 Untertypen (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie die Regeln der statischen Semantik von Schnittstellen und Unter-
typen einüben. Sie können sich an den Vorlesungsfolien 899 bis 967 sowie an den Kapiteln 8.1 und 8.2 im
Skript orientieren.

type A =
interface

abstract member f: Unit -> Nat
end

type B =
interface

inherit A
abstract member g: Nat -> String

end

type C =
interface

inherit A
abstract member h: String -> Nat

end

type D =
interface

inherit C
abstract member i: Nat -> Unit

end

Verwenden Sie die Schnittstellentypdefinitionen von oben, um den Typ der folgenden Ausdrücke mit einem
vollständigen Beweisbaum anzugeben. Benutzen Sie die Regeln der statischen Semantik aus der Vorlesung.

a) fun (s : B * D) -> ((snd s) :> C).h ((fst s).g 1N)

Verwende Σ := {s 7→ B ∗ D}

Σ ⊢ s : B ∗ D
Σ ⊢ snd s : D D ≼ C
Σ ⊢ (snd s) :> C : C

Σ ⊢ ((snd s) :> C).h : S tring→ Nat

Σ ⊢ s : B ∗ D
Σ ⊢ fst s : B

Σ ⊢ (fst s).g : Nat → S tring Σ ⊢ 1N : Nat

Σ ⊢ (fst s).g 1N : S tring
Σ ⊢ ((snd s) :> C).h ((fst s).g 1N) : Nat

∅ ⊢ fun (s : B * D) -> ((snd s) :> C).h ((fst s).g 1N) : B ∗ D→ Nat

b) fun (s: A -> D) -> (fun (b: B) -> (s b).f ())

Verwende Σ := {s 7→ A→ D, b 7→ B}

Σ ⊢ s : A→ D
B ≼ A

D ≼ C C ≼ A
D ≼ A

Σ ⊢ A→ D ≼ B→ A
Σ ⊢ s : B→ A Σ ⊢ b : B

Σ ⊢ s b : A
Σ ⊢ (s b).f : Unit → Nat Σ ⊢ () : Unit

Σ ⊢ (s b).f () : Nat
{s 7→ A→ D} ⊢ fun (b: B) -> (s b).f () : B→ Nat

∅ ⊢ fun (s: A -> D) -> (fun (b: B) -> (s b).f ()) : (A→ D)→ (B→ Nat)

6

	Untertypen (Präsenzaufgabe)
	Mini CAS (Einreichaufgabe, 30 Punkte)
	Untertypen (Trainingsaufgabe)

