
Prof. Dr. Ralf Hinze

Cass Alexandru, M.Sc.

Alexander Dinges, M.Sc.

Felix Winkler, M.Sc.

RPTU
Fachbereich Informatik

AG Programmiersprachen

Übungsblatt 12: Konzepte der Programmierung (WS 2025/26)

Ausgabe: 27. Januar 2026
Abgabe: 02./03./04. Februar 2026, siehe Homepage

Studie Darstellung Fehlermeldungen Wir haben an einer alternativen Darstellung der Fehlermeldun-
gen in ExClaim gearbeitet. Diese Woche bekommen Gruppen 2, 4, 6, 8, 10 Fehlermeldungen wie gewohnt
dargestellt, während Gruppen 1, 3, 5, 7, 9 und 11 die alternative Darstellung bekommen. Wir aggregieren
Daten über diese Gruppen zur Verwendung der Testfunktion in ExClaim.

Aufgabe 1 Untertypen (Präsenzaufgabe)

Motivation: In dieser Aufgabe sollen Sie sich mit Untertypbeziehungen beschäftigen. Sie können sich an
den Vorlesungsfolien 901 bis 969 sowie an den Kapiteln 8.1 und 8.2 im Skript orientieren.

Es gelten die Untertypbeziehungen D ≼ C, C ≼ A und C ≼ B, die in der nebenstehenden
Abbildung visualisiert sind.

In der folgenden Tabelle werden je zwei Typen in Relation gesetzt:

• t1 ≺ t2 bedeutet, dass t1 ein Untertyp von t2 ist (t1 ≼ t2), nicht jedoch t2 ein
Untertyp von t1.

• t1 ≻ t2 bedeutet, dass t2 ein Untertyp von t1 ist (t2 ≼ t1), nicht jedoch t1 ein
Untertyp von t2.

• t1 ∥ t2 bedeutet, dass t1 und t2 unvergleichbar sind, das heißt es gilt weder t1 ≼ t2
noch t2 ≼ t1.

A B

C

D

Füllen Sie die Lücken in der Tabelle aus. In der ersten und dritten Spalte müssen Sie einen Typ eintragen, in
der zweiten Spalte eine Relation (≺ oder ≻ oder ∥).

Zur Erinnerung: Die folgenden Deduktionsregeln gelten für die Relation »≼«:

t1 ≼ t2 t2 ≼ t3
t1 ≼ t3

t1 ≼ t′1 t2 ≼ t′2
t1 ∗ t2 ≼ t′1 ∗ t′2

t′1 ≼ t1 t2 ≼ t′2
t1 → t2 ≼ t′1 → t′2

https://pl.cs.uni-kl.de/homepage/de/teaching/ws25/kdp/uebung/

t1 Relation t2

D A

≻ C

A ∗C ≺

A ∗ B B ∗ A

C ∗ D ≻

A→ C C → C

B→ D C → C

C → D ≻

C → A B→ D

D→ A C → B

Aufgabe 2 Mini CAS (Einreichaufgabe, 30 Punkte)

Motivation: In dieser Aufgabe sollen Sie ein Problem sowohl funktional als auch objektorientiert imple-
mentieren und beide Modelle miteinander vergleichen.

Schreiben Sie Ihre Lösungen in die Datei Calculus.fs aus der Vorlage Aufgabe-12-2.zip.

Bei ihrem Job als Mathe-Nachhilfelehrerin muss Lisa Lista viele Aufgaben korrigieren. Um sich die Arbeit
etwas zu erleichtern, beschließt sie ein kleines Computer Algebra System (CAS) zu entwickeln, mit dem sie
Ableitungen von einigen eindimensionalen Funktionen symbolisch bestimmen kann.

Lisa Lista schwebt folgende funktionale Modellierung vor:

type Function =
| Const of Nat // Konstante Funktion f(x) = c
| Id // Identität f(x) = x
| Add of Function * Function // Addition f(x) = g(x) + h(x)
| Mul of Function * Function // Multiplikation f(x) = g(x) * h(x)
| Pow of Function * Nat // Potenz f(x) = g(x) ^ n
| Comp of Function * Function // Komposition f(x) = g(h(x))

Die Idee ist, dass jedes Element vom Typ Function eine reelle Funktion in unserem CAS repräsentiert,
die wir jedoch nur an den Stellen der natürlichen Zahlen

(
R ∩ N

)
auswerten (damit sind Ableitungen wie

gewohnt definiert und wir vermeiden es in F# Fließkommazahlen zu verwenden).

So repräsentiert zum Beispiel Constant 1N die Funktion f (x) = 1, Id repräsentiert f (x) = x, Add (Id,
Constant 2N) repräsentiert f (x) = x + 2, Mul (Id, Constant 2N) repräsentiert f (x) = x · 2 und Add (Mul(Id,
Id), Mul(Constant 2N, Id)) repräsentiert f (x) = x · x + 2 · x.

Außerdem können wir Funktionen mit Comp verketten, zum Beispiel repräsentiert Mul(Comp(Pow(Id, 2N),
Add(Id, Constant 3N)), Add(Id, Constant 4N)) die Funktion f (x) =

(
x + 3

)2
·
(
x + 4

)
. Das erste Argument

bezeichnet also die äußere Funktion, das zweite Argument die innere Funktion.

Lisa Lista möchte für ihr CAS drei Operationen (F#-Funktionen) implementieren:

• toString: Function -> String stellt die gegebene CAS-Funktion (korrekt geklammert) als String dar.

• apply: Function -> Nat -> Nat nimmt eine CAS-Funktion f sowie eine natürliche Zahl n und berech-
net das Ergebnis von f angewendet auf n.

• derive: Function -> Function berechnet die Ableitung der gegebenen CAS-Funktion.

Harry Hacker schlägt eine objektorientierte Modellierung vor und präsentiert folgende Schnittstelle:

type IFunction =
abstract member ToString: unit -> string
abstract member Apply: Nat -> Nat
abstract member Derive: unit -> IFunction

Er möchte dann für jede Art von unterstützter CAS-Funktion einen Objektkonstruktor implementieren, also
eine F#-Funktion die ein Objekt vom Typ IFunction zurückgibt.

Lisa Lista und Harry Hacker haben bereits begonnen, das CAS zu implementieren. Sie finden den unfertigen
Code im Template zu dieser Aufgabe. Beide haben die Operationen zur Darstellung als String und zum
Anwenden der Funktion für die konstante Funktion, die Identität und die Addition bereits umgesetzt. Es
fehlen noch Multiplikation, Potenz und Verkettung sowie die Berechnung der Ableitung.

Hinweis: Wir testen in ExClaim auf Äquivalenz statt Gleichheit bezüglich unserer Referenzimplementie-
rung. Insbesondere dürfen Sie bei toString überflüssige Klammern weglassen. Desweiteren dürfen Sie bei
derive arithmetische Simplifikationen durchführen.

a) Erweitern Sie beide Modelle um Multiplikation, Potenz und Verkettung. Für Lisas funktionales Modell
müssen Sie dazu zunächst in der Typdefinition die drei vorbereiteten Zeilen aktivieren.

Hinweise: Stellen Sie die Potenzfunktion mit dem Zeichen ˆ dar, die Funktion Pow (Id, 2N) demnach als
xˆ2. Zur Implementierung von apply können Sie den F#-Operator ** verwenden. Zur Darstellung der
Funktionskomposition wird üblicherweise das Zeichen ◦ verwendet, nutzen Sie der Einfachheit halber
den Kleinbuchstaben o.

b) Erweitern Sie beide Modelle um die Berechnung der Ableitung. Für Harrys objektorientiertes Modell
müssen Sie dazu zunächst in der Schnittstellendefinition die vorbereitete Zeile aktivieren.

Hinweise: Für die Ableitungsregeln können Sie Ihr altes Mathematik-Schulbuch oder eine Formelsamm-
lung konsultieren. Denken Sie an die Produktregel und die Kettenregel!

c) Nachdem Sie sowohl das funktionale als auch das objektorientierte Modell erweitert haben, beantworten
Sie dazu folgende Fragen. Begründen Sie Ihre Antworten (jeweils maximal 50 Wörter).

1. Welches der Modelle lässt sich leichter um zusätzliche Operationen (apply, toString, derive) erwei-
tern?

2. Welches der Modelle lässt sich leichter um zusätzliche Arten von CAS-Funktionen (constant, id,
add, mul, pow, comp) erweitern?

3. Welches der Modelle ist im Bezug auf künftige Erweiterungen unseres CAS die bessere Wahl?

Aufgabe 3 Untertypen (Trainingsaufgabe)

Motivation: In dieser Aufgabe sollen Sie die Regeln der statischen Semantik von Schnittstellen und Unter-
typen einüben. Sie können sich an den Vorlesungsfolien 899 bis 967 sowie an den Kapiteln 8.1 und 8.2 im
Skript orientieren.

type A =
interface

abstract member f: Unit -> Nat
end

type B =
interface

inherit A
abstract member g: Nat -> String

end

type C =
interface

inherit A
abstract member h: String -> Nat

end

type D =
interface

inherit C
abstract member i: Nat -> Unit

end

Verwenden Sie die Schnittstellentypdefinitionen von oben, um den Typ der folgenden Ausdrücke mit einem
vollständigen Beweisbaum anzugeben. Benutzen Sie die Regeln der statischen Semantik aus der Vorlesung.

a) fun (s : B * D) -> ((snd s) :> C).h ((fst s).g 1N)

b) fun (s: A -> D) -> (fun (b: B) -> (s b).f ())

	Untertypen (Präsenzaufgabe)
	Mini CAS (Einreichaufgabe, 30 Punkte)
	Untertypen (Trainingsaufgabe)

